Advertisement

Pathological and therapeutic aspects of matrix metalloproteinases: implications in childhood leukemia

  • Yi-Hsuan Hsiao
  • Shih-Chi Su
  • Chiao-Wen Lin
  • Yu-Hua Chao
  • Wei-En Yang
  • Shun-Fa YangEmail author
Article
  • 20 Downloads

Abstract

Matrix metalloproteinases (MMPs) play a major role in extracellular matrix remodeling and are involved in tumor cell invasion. Cancers such as childhood leukemia are characterized by their capacity to infiltrate different organs. MMP production by leukemic cells may indicate a leukemic subtype or subpopulation with a more invasive phenotype. Therefore, clarifying the action mechanisms of MMPs as prognostic predictors or MMP targeting as a therapeutic strategy is necessary. MMP-targeting drugs have been developed for the treatment of hematological malignancies. In this review, we highlight current advances in understanding the molecular mechanisms and pathological characteristics of various MMPs, as well as recent therapeutic advances targeting MMPs in childhood leukemia. Several studies have been conducted on the therapeutic efficacy of MMP inhibitors in cancer, such as collagen peptidomimetics, nonpeptidomimetic inhibitors of MMP active sites, bisphosphonates, and tetracycline derivatives. Here, we conclude that more clinical trials are necessary to estimate the role of selective MMP inhibitors in the treatment and prevention of childhood leukemia.

Keywords

Matrix metalloproteinases Cancer progression Metastasis Childhood leukemia 

Notes

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Kaatsch, P. (2010). Epidemiology of childhood cancer. Cancer Treatment Reviews, 36(4), 277–285.  https://doi.org/10.1016/j.ctrv.2010.02.003.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang, L., Samad, A., Pombo-de-Oliveira, M. S., Scelo, G., Smith, M. T., Feusner, J., Wiemels, J. L., & Metayer, C. (2015). Global characteristics of childhood acute promyelocytic leukemia. Blood Reviews, 29(2), 101–125.  https://doi.org/10.1016/j.blre.2014.09.013.CrossRefPubMedGoogle Scholar
  3. 3.
    Margolin, J. F. (2011). Molecular diagnosis and risk-adjusted therapy in pediatric hematologic malignancies: a primer for pediatricians. European Journal of Pediatrics, 170(4), 419–425.  https://doi.org/10.1007/s00431-011-1424-7.CrossRefPubMedGoogle Scholar
  4. 4.
    Deschler, B., & Lubbert, M. (2006). Acute myeloid leukemia: epidemiology and etiology. Cancer, 107(9), 2099–2107.  https://doi.org/10.1002/cncr.22233.CrossRefPubMedGoogle Scholar
  5. 5.
    Metayer, C., Dahl, G., Wiemels, J., & Miller, M. (2016). Childhood leukemia: a preventable disease. Pediatrics, 138(Suppl 1), S45–S55.  https://doi.org/10.1542/peds.2015-4268H.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Athale, U. H., Gibson, P. J., Bradley, N. M., Malkin, D. M., & Hitzler, J. (2016). Minimal residual disease and childhood leukemia: Standard of Care Recommendations rom the Pediatric Oncology Group of Ontario MRD Working Group. Pediatric Blood & Cancer, 63(6), 973–982.  https://doi.org/10.1002/pbc.25939.CrossRefGoogle Scholar
  7. 7.
    Vora, A., Goulden, N., Wade, R., Mitchell, C., Hancock, J., Hough, R., Rowntree, C., & Richards, S. (2013). Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology, 14(3), 199–209.  https://doi.org/10.1016/s1470-2045(12)70600-9.CrossRefPubMedGoogle Scholar
  8. 8.
    Irving, J. A. (2016). Towards an understanding of the biology and targeted treatment of paediatric relapsed acute lymphoblastic leukaemia. British Journal of Haematology, 172(5), 655–666.  https://doi.org/10.1111/bjh.13852.CrossRefPubMedGoogle Scholar
  9. 9.
    Hsiao, Y. C., Peng, S. F., Lai, K. C., Liao, C. L., Huang, Y. P., Lin, C. C., Lin, M. L., Liu, K. C., Tsai, C. C., Ma, Y. S., & Chung, J. G. (2019). Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environmental Toxicology, 34(4), 443–456.  https://doi.org/10.1002/tox.22698.CrossRefPubMedGoogle Scholar
  10. 10.
    Chien, M. H., Chow, J. M., Lee, W. J., Chen, H. Y., Tan, P., Wen, Y. C., Lin, Y. W., Hsiao, P. C., & Yang, S. F. (2017). Tricetin induces apoptosis of human leukemic HL-60 cells through a reactive oxygen species-mediated c-Jun N-terminal kinase activation pathway. International Journal of Molecular Sciences, 18(8).  https://doi.org/10.3390/ijms18081667.CrossRefGoogle Scholar
  11. 11.
    Huang, H. L., Hsieh, M. J., Chien, M. H., Chen, H. Y., Yang, S. F., & Hsiao, P. C. (2014). Glabridin mediate caspases activation and induces apoptosis through JNK1/2 and p38 MAPK pathway in human promyelocytic leukemia cells. PLoS One, 9(6), e98943.  https://doi.org/10.1371/journal.pone.0098943.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang, S. C., Chow, J. M., Chien, M. H., Lin, C. W., Chen, H. Y., Hsiao, P. C., et al. (2018). Cantharidic acid induces apoptosis of human leukemic HL-60 cells via c-Jun N-terminal kinase-regulated caspase-8/-9/-3 activation pathway. Environmental Toxicology, 33(4), 514–522.  https://doi.org/10.1002/tox.22537.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu, T. J., Lin, C. Y., Tsai, C. H., Huang, Y. L., & Tang, C. H. (2018). Glucose suppresses IL-1beta-induced MMP-1 expression through the FAK, MEK, ERK, and AP-1 signaling pathways. Environmental Toxicology, 33(10), 1061–1068.  https://doi.org/10.1002/tox.22618.CrossRefPubMedGoogle Scholar
  14. 14.
    Chien, M. H., Lin, C. W., Cheng, C. W., Wen, Y. C., & Yang, S. F. (2013). Matrix metalloproteinase-2 as a target for head and neck cancer therapy. Expert Opinion on Therapeutic Targets, 17(2), 203–216.  https://doi.org/10.1517/14728222.2013.740012.CrossRefPubMedGoogle Scholar
  15. 15.
    Su, S. C., Hsieh, M. J., Yang, W. E., Chung, W. H., Reiter, R. J., & Yang, S. F. (2017). Cancer metastasis: Mechanisms of inhibition by melatonin. Journal of Pineal Research, 62(1).  https://doi.org/10.1111/jpi.12370.CrossRefGoogle Scholar
  16. 16.
    Liu, J. F., Lee, C. W., Tsai, M. H., Tang, C. H., Chen, P. C., Lin, L. W., Lin, C. Y., Lu, C. H., Lin, Y. F., Yang, S. H., & Chao, C. C. (2018). Thrombospondin 2 promotes tumor metastasis by inducing matrix metalloproteinase-13 production in lung cancer cells. Biochemical Pharmacology, 155, 537–546.  https://doi.org/10.1016/j.bcp.2018.07.024.CrossRefPubMedGoogle Scholar
  17. 17.
    Ho, H. Y., Lin, C. W., Chien, M. H., Reiter, R. J., Su, S. C., Hsieh, Y. H., et al. (2016). Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. Journal of Pineal Research, 61(4), 479–492.  https://doi.org/10.1111/jpi.12365.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang, J. S., Lin, C. W., Su, S. C., & Yang, S. F. (2016). Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opinion on Drug Metabolism & Toxicology, 12(2), 191–200.  https://doi.org/10.1517/17425255.2016.1131820.CrossRefGoogle Scholar
  19. 19.
    Dias, S., Hattori, K., Zhu, Z., Heissig, B., Choy, M., Lane, W., Wu, Y., Chadburn, A., Hyjek, E., Gill, M., Hicklin, D. J., Witte, L., Moore, M. A., & Rafii, S. (2000). Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. The Journal of Clinical Investigation, 106(4), 511–521.  https://doi.org/10.1172/jci8978.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schneider, P., Costa, O., Legrand, E., Bigot, D., Lecleire, S., Grassi, V., Vannier, J. P., & Vasse, M. (2010). In vitro secretion of matrix metalloprotease 9 is a prognostic marker in childhood acute lymphoblastic leukemia. Leukemia Research, 34(1), 24–31.  https://doi.org/10.1016/j.leukres.2009.07.039.CrossRefPubMedGoogle Scholar
  21. 21.
    Pei, J. S., Hsu, P. C., Chou, A. K., Tsai, C. W., Chang, W. S., Hsiao, C. L., et al. (2016). Matrix metalloproteinase-1 genotype contributes to the risk of non-solid tumor in childhood leukemia. Anticancer Res, 36(10), 5127–5132.  https://doi.org/10.21873/anticanres.11082.CrossRefPubMedGoogle Scholar
  22. 22.
    Pei, J. S., Chou, A. K., Hsu, P. C., Tsai, C. W., Chang, W. S., Wu, M. F., et al. (2017). Contribution of matrix metalloproteinase-7 genotypes to the risk of non-solid tumor, childhood leukemia. Anticancer Research, 37(12), 6679–6684.  https://doi.org/10.21873/anticanres.12126.CrossRefPubMedGoogle Scholar
  23. 23.
    Hsu, P. C., Pei, J. S., Chen, C. C., Chang, W. S., Kuo, C. C., Cheng, S. P., et al. (2019). Association of matrix metallopeptidase-2 promoter polymorphisms with the risk of childhood leukemia. Anticancer Research, 39(3), 1185–1190.  https://doi.org/10.21873/anticanres.13228.CrossRefPubMedGoogle Scholar
  24. 24.
    Lin, C. M., Zeng, Y. L., Xiao, M., Mei, X. Q., Shen, L. Y., Guo, M. X., Lin, Z. Y., Liu, Q. F., & Yang, T. (2017). The relationship between MMP-2 -1306C>T and MMP-9 -1562C>T polymorphisms and the risk and prognosis of T-cell acute lymphoblastic leukemia in a Chinese population: A case-control study. Cellular Physiology and Biochemistry, 42(4), 1458–1468.  https://doi.org/10.1159/000479210.CrossRefPubMedGoogle Scholar
  25. 25.
    Gusella, M., Bolzonella, C., Paolini, R., Rodella, E., Bertolaso, L., Scipioni, C., Bellini, S., Cuneo, A., Pasini, F., & Ramazzina, E. (2017). Plasma matrix metalloprotease 9 correlates with blood lymphocytosis, leukemic cell invasiveness, and prognosis in B-cell chronic lymphocytic leukemia. Tumour Biology, 39(2), 1010428317694325.  https://doi.org/10.1177/1010428317694325.CrossRefPubMedGoogle Scholar
  26. 26.
    Amigo-Jimenez, I., Bailon, E., Ugarte-Berzal, E., Aguilera-Montilla, N., Garcia-Marco, J. A., & Garcia-Pardo, A. (2014). Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide. PLoS One, 9(6), e99993.  https://doi.org/10.1371/journal.pone.0099993.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuittinen, O., Savolainen, E. R., Koistinen, P., Mottonen, M., & Turpeenniemi-Hujanen, T. (2001). MMP-2 and MMP-9 expression in adult and childhood acute lymphatic leukemia (ALL). Leukemia Research, 25(2), 125–131.  https://doi.org/10.1016/s0145-2126(00)00104-1.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu, B., Zhang, J., Chen, J., Li, C., & Wang, X. (2015). Molecular biological characteristics of the recruitment of hematopoietic stem cells from bone marrow niche in chronic myeloid leukemia. International Journal of Clinical and Experimental Pathology, 8(10), 12595–12607.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Redondo-Munoz, J., Escobar-Diaz, E., Samaniego, R., Terol, M. J., Garcia-Marco, J. A., & Garcia-Pardo, A. (2006). MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood, 108(9), 3143–3151.  https://doi.org/10.1182/blood-2006-03-007294.CrossRefPubMedGoogle Scholar
  30. 30.
    Redondo-Munoz, J., Ugarte-Berzal, E., Terol, M. J., Van den Steen, P. E., Hernandez del Cerro, M., Roderfeld, M., et al. (2010). Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer Cell, 17(2), 160–172.  https://doi.org/10.1016/j.ccr.2009.12.044.CrossRefPubMedGoogle Scholar
  31. 31.
    Feng, S., Cen, J., Huang, Y., Shen, H., Yao, L., Wang, Y., & Chen, Z. (2011). Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One, 6(8), e20599.  https://doi.org/10.1371/journal.pone.0020599.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shay, G., Lynch, C. C., & Fingleton, B. (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biology, 44-46, 200–206.  https://doi.org/10.1016/j.matbio.2015.01.019.CrossRefPubMedGoogle Scholar
  33. 33.
    Song, J. H., Kim, S. H., Cho, D., Lee, I. K., Kim, H. J., & Kim, T. S. (2009). Enhanced invasiveness of drug-resistant acute myeloid leukemia cells through increased expression of matrix metalloproteinase-2. International Journal of Cancer, 125(5), 1074–1081.  https://doi.org/10.1002/ijc.24386.CrossRefPubMedGoogle Scholar
  34. 34.
    Suminoe, A., Matsuzaki, A., Hattori, H., Koga, Y., Ishii, E., & Hara, T. (2007). Expression of matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) genes in blasts of infant acute lymphoblastic leukemia with organ involvement. Leukemia Research, 31(10), 1437–1440.  https://doi.org/10.1016/j.leukres.2007.01.015.CrossRefPubMedGoogle Scholar
  35. 35.
    Travaglino, E., Benatti, C., Malcovati, L., Della Porta, M. G., Galli, A., Bonetti, E., et al. (2008). Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. European Journal of Haematology, 80(3), 216–226.  https://doi.org/10.1111/j.1600-0609.2007.01012.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Amin Asnafi, A., Bagheri, M., Zibara, K., Maleki Behzad, M., & Shahrabi, S. (2019). Expression and activity of matrix Metalloproteinases in leukemia. Journal of Pediatric Hematology/Oncology, 41(2), 87–95.  https://doi.org/10.1097/mph.0000000000001386.CrossRefPubMedGoogle Scholar
  37. 37.
    Hatfield, K. J., Reikvam, H., & Bruserud, O. (2010). The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia. Current Medicinal Chemistry, 17(36), 4448–4461.  https://doi.org/10.2174/092986710794183033.CrossRefPubMedGoogle Scholar
  38. 38.
    Aref, S., Osman, E., Mansy, S., Omer, N., Azmy, E., Goda, T., & el-Sherbiny, M. (2007). Prognostic relevance of circulating matrix metalloproteinase-2 in acute myeloid leukaemia patients. Hematological Oncology, 25(3), 121–126.  https://doi.org/10.1002/hon.817.CrossRefPubMedGoogle Scholar
  39. 39.
    Klein, G., Vellenga, E., Fraaije, M. W., Kamps, W. A., & de Bont, E. S. (2004). The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Reviews in Oncology/Hematology, 50(2), 87–100.  https://doi.org/10.1016/j.critrevonc.2003.09.001.CrossRefPubMedGoogle Scholar
  40. 40.
    Chaudhary, A. K., Pandya, S., Ghosh, K., & Nadkarni, A. (2013). Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutation Research, 753(1), 7–23.  https://doi.org/10.1016/j.mrrev.2013.01.002.CrossRefPubMedGoogle Scholar
  41. 41.
    Scrideli, C. A., Cortez, M. A., Yunes, J. A., Queiroz, R. G., Valera, E. T., da Mata, J. F., et al. (2010). mRNA expression of matrix metalloproteinases (MMPs) 2 and 9 and tissue inhibitor of matrix metalloproteinases (TIMPs) 1 and 2 in childhood acute lymphoblastic leukemia: potential role of TIMP1 as an adverse prognostic factor. Leukemia Research, 34(1), 32–37.  https://doi.org/10.1016/j.leukres.2009.10.007.CrossRefPubMedGoogle Scholar
  42. 42.
    Ries, C., Loher, F., Zang, C., Ismair, M. G., & Petrides, P. E. (1999). Matrix metalloproteinase production by bone marrow mononuclear cells from normal individuals and patients with acute and chronic myeloid leukemia or myelodysplastic syndromes. Clinical Cancer Research, 5(5), 1115–1124.PubMedGoogle Scholar
  43. 43.
    Wesolowska-Andersen, A., Borst, L., Dalgaard, M. D., Yadav, R., Rasmussen, K. K., Wehner, P. S., et al. (2015). Genomic profiling of thousands of candidate polymorphisms predicts risk of relapse in 778 Danish and German childhood acute lymphoblastic leukemia patients. Leukemia, 29(2), 297–303.  https://doi.org/10.1038/leu.2014.205.CrossRefPubMedGoogle Scholar
  44. 44.
    Lin, L. I., Lin, D. T., Chang, C. J., Lee, C. Y., Tang, J. L., & Tien, H. F. (2002). Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. British Journal of Haematology, 117(4), 835–841.  https://doi.org/10.1046/j.1365-2141.2002.03510.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Yu, X. F., & Han, Z. C. (2006). Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histology and Histopathology, 21(5), 519–531.  https://doi.org/10.14670/hh-21.519.CrossRefPubMedGoogle Scholar
  46. 46.
    Reikvam, H., Hatfield, K. J., Oyan, A. M., Kalland, K. H., Kittang, A. O., & Bruserud, O. (2010). Primary human acute myelogenous leukemia cells release matrix metalloproteases and their inhibitors: release profile and pharmacological modulation. European Journal of Haematology, 84(3), 239–251.  https://doi.org/10.1111/j.1600-0609.2009.01382.x.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen, Y. J., & Chang, L. S. (2015). NFkappaB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-alpha-treated human leukemia U937 cells. Biochimica et Biophysica Acta, 1849(10), 1248–1259.  https://doi.org/10.1016/j.bbagrm.2015.07.016.CrossRefPubMedGoogle Scholar
  48. 48.
    Marquez-Curtis, L. A., Shirvaikar, N., Turner, A. R., Mirza, I., Surmawala, A., Larratt, L. M., & Janowska-Wieczorek, A. (2012). Membrane type-1 matrix metalloproteinase expression in acute myeloid leukemia and its upregulation by tumor necrosis factor-alpha. Cancers (Basel), 4(3), 743–762.  https://doi.org/10.3390/cancers4030743.CrossRefGoogle Scholar
  49. 49.
    Sato, H., & Takino, T. (2010). Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion. Cancer Science, 101(4), 843–847.  https://doi.org/10.1111/j.1349-7006.2010.01498.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Wu, Y., Pan, S., Leng, J., Xie, T., Jamal, M., Yin, Q., Li, J., He, C., Dong, X., Shao, L., & Zhang, Q. (2019). The prognostic value of matrix metalloproteinase-7 and matrix metalloproteinase-15 in acute myeloid leukemia. Journal of Cellular Biochemistry, 120(6), 10613–10624.  https://doi.org/10.1002/jcb.28351.CrossRefPubMedGoogle Scholar
  51. 51.
    Wu, J., & Song, Y. (2018). Expression and clinical significance of serum MMP-7 and PTEN levels in patients with acute myeloid leukemia. Oncology Letters, 15(3), 3447–3452.  https://doi.org/10.3892/ol.2018.7799.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhong, Y., Lu, Y. T., Sun, Y., Shi, Z. H., Li, N. G., Tang, Y. P., & Duan, J. A. (2018). Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opinion on Drug Discovery, 13(1), 75–87.  https://doi.org/10.1080/17460441.2018.1398732.CrossRefPubMedGoogle Scholar
  53. 53.
    He, Z. K., Xue, S., Zhang, Y. H., Li, L., Xia, Y. J., Wang, X., et al. (2019). expression levels of JARID1B, Hes1 and MMP-9 genes in CML patients treated with Imatinib Mesylate. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 27(4), 1071–1076.  https://doi.org/10.19746/j.cnki.issn.1009-2137.2019.04.013.CrossRefPubMedGoogle Scholar
  54. 54.
    Mukherjee, A., Adhikari, N., & Jha, T. (2017). A pentanoic acid derivative targeting matrix metalloproteinase-2 (MMP-2) induces apoptosis in a chronic myeloid leukemia cell line. European Journal of Medicinal Chemistry, 141, 37–50.  https://doi.org/10.1016/j.ejmech.2017.09.052.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang, C., Xiang, R., Zhang, X., & Chen, Y. (2015). Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase. Molecular Medicine Reports, 12(3), 3374–3380.  https://doi.org/10.3892/mmr.2015.3833.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu, W. H., Chen, Y. J., Chien, J. H., & Chang, L. S. (2014). Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells. Journal of Cellular Physiology, 229(5), 588–598.  https://doi.org/10.1002/jcp.24481.CrossRefPubMedGoogle Scholar
  57. 57.
    Liu, W. H., & Chang, L. S. (2010). Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway. Journal of Cellular Physiology, 224(3), 775–785.  https://doi.org/10.1002/jcp.22180.CrossRefPubMedGoogle Scholar
  58. 58.
    Chen, Y. J., & Chang, L. S. (2012). Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Molecular Nutrition & Food Research, 56(9), 1398–1412.  https://doi.org/10.1002/mnfr.201200167.CrossRefGoogle Scholar
  59. 59.
    Fingleton, B. (2007). Matrix metalloproteinases as valid clinical targets. Current Pharmaceutical Design, 13(3), 333–346.  https://doi.org/10.2174/138161207779313551.CrossRefPubMedGoogle Scholar
  60. 60.
    Jiang, L., Meng, W., Yu, G., Yin, C., Wang, Z., Liao, L., & Meng, F. (2019). MicroRNA-144 targets APP to regulate AML1/ETO(+) leukemia cell migration via the p-ERK/c-Myc/MMP-2 pathway. Oncology Letters, 18(2), 2034–2042.  https://doi.org/10.3892/ol.2019.10477.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yu, X. F., Yang, C., Liang, L. H., Liu, B., Zhou, B., Li, B., & Han, Z. C. (2006). Inhibition of human leukemia xenograft in nude mice by adenovirus-mediated tissue inhibitor of metalloproteinase-3. Leukemia, 20(1), 1–8.  https://doi.org/10.1038/sj.leu.2404021.CrossRefPubMedGoogle Scholar
  62. 62.
    Hoekstra, R., Eskens, F. A., & Verweij, J. (2001). Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist, 6(5), 415–427.  https://doi.org/10.1634/theoncologist.6-5-415.CrossRefPubMedGoogle Scholar
  63. 63.
    Giavazzi, R., & Taraboletti, G. (2001). Preclinical development of metalloproteasis inhibitors in cancer therapy. Critical Reviews in Oncology/Hematology, 37(1), 53–60.CrossRefGoogle Scholar
  64. 64.
    Hidalgo, M., & Eckhardt, S. G. (2001). Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute, 93(3), 178–193.  https://doi.org/10.1093/jnci/93.3.178.CrossRefPubMedGoogle Scholar
  65. 65.
    Whitehead, T. P., Metayer, C., Wiemels, J. L., Singer, A. W., & Miller, M. D. (2016). Childhood leukemia and primary prevention. Current Problems in Pediatric and Adolescent Health Care, 46(10), 317–352.  https://doi.org/10.1016/j.cppeds.2016.08.004.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yi-Hsuan Hsiao
    • 1
    • 2
    • 3
  • Shih-Chi Su
    • 4
    • 5
  • Chiao-Wen Lin
    • 6
  • Yu-Hua Chao
    • 2
    • 7
  • Wei-En Yang
    • 1
    • 8
  • Shun-Fa Yang
    • 1
    • 8
    Email author
  1. 1.Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
  2. 2.School of MedicineChung Shan Medical UniversityTaichungTaiwan
  3. 3.Department of Obstetrics and GynecologyChanghua Christian HospitalChanghuaTaiwan
  4. 4.Whole-Genome Research Core Laboratory of Human DiseasesChang Gung Memorial HospitalKeelungTaiwan
  5. 5.Department of Dermatology, Drug Hypersensitivity Clinical and Research CenterChang Gung Memorial HospitalLinkouTaiwan
  6. 6.Institute of Oral SciencesChung Shan Medical UniversityTaichungTaiwan
  7. 7.Department of PediatricsChung Shan Medical University HospitalTaichungTaiwan
  8. 8.Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan

Personalised recommendations