Advertisement

KISS1 in breast cancer progression and autophagy

  • Ilya V. UlasovEmail author
  • Anton V. Borovjagin
  • Peter Timashev
  • Massimo Cristofanili
  • Danny R. Welch
Article
  • 75 Downloads

Abstract

Tumor suppressors are cellular proteins typically expressed in normal (non-cancer) cells that not only regulate such cellular functions as proliferation, migration and adhesion, but can also be secreted into extracellular space and serve as biomarkers for pathological conditions or tumor progression. KISS1, a precursor for several shorter peptides, known as metastin (Kisspeptin-54), Kisspeptin-14, Kisspeptin-13 and Kisspeptin-10, is one of those metastasis suppressor proteins, whose expression is commonly downregulated in the metastatic tumors of various origins. The commonly accepted role of KISS1 in metastatic tumor progression mechanism is the ability of this protein to suppress colonization of disseminated cancer cells in distant organs critical for the formation of the secondary tumor foci. Besides, recent evidence suggests involvement of KISS1 in the mechanisms of tumor angiogenesis, autophagy and apoptosis regulation, suggesting a possible role in both restricting and promoting cancer cell invasion. Here, we discuss the role of KISS1 in regulating metastases, the link between KISS1 expression and the autophagy-related biology of cancer cells and the perspectives of using KISS1 as a potential diagnostic marker for cancer progression as well as a new anti-cancer therapeutics.

Keywords

KISS1 tumor suppressor Autophagy Breast cancer metastases Brain tumor 

Abbreviations

AR

androgen receptor

BMP

bone morphogenetic protein

CXCR4

C-X-C chemokine receptor type 4

CXCL12 or SDF1

The stromal cell-derived factor 1 (SDF1), also known as C-X-C motif chemokine 12 (CXCL12)

ER

estrogen receptor

GEO

Gene Expression Omnibus (GEO), a database repository

GFAP

Glial fibrillary acidic protein

HER2

a member of the human epidermal growth factor receptor (HER/EGFR/ErbB) family

NFkB

Nuclear Factor Kappa B

PDGFRb

Platelet Derived Growth Factor Receptor Beta

PR

Progesterone Receptor

WASF3

WAS Protein Family Member 3

Notes

Funding information

This research study was supported by Russian academic excellence project “5–100”.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. 1.
    Pranjol, M. Z., Gutowski, N., Hannemann, M., & Whatmore, J. (2015). The potential role of the proteases Cathepsin D and Cathepsin L in the progression and metastasis of epithelial ovarian Cancer. Biomolecules, 5(4), 3260–3279.  https://doi.org/10.3390/biom5043260.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sinha, R., Sage, W., & Watts, C. (2017). The evolving clinical management of cerebral metastases. European Journal of Surgical Oncology, 43(7), 1173–1185.  https://doi.org/10.1016/j.ejso.2016.10.006.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsukada, Y., Fouad, A., Pickren, J. W., & Lane, W. W. (1983). Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer, 52(12), 2349–2354.CrossRefGoogle Scholar
  4. 4.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.  https://doi.org/10.1038/nrc1098.CrossRefPubMedGoogle Scholar
  5. 5.
    Jia, W., Lu, R., Martin, T. A., & Jiang, W. G. (2014). The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Molecular Medicine Reports, 9(3), 779–785.  https://doi.org/10.3892/mmr.2013.1875.CrossRefPubMedGoogle Scholar
  6. 6.
    Van Swearingen, A. E., Siegel, M. B., & Anders, C. K. (2014). Breast cancer brain metastases: Evidence for neuronal-like adaptation in a 'breast-to-brain' transition? Breast Cancer Research, 16(3), 304.  https://doi.org/10.1186/bcr3651.CrossRefPubMedGoogle Scholar
  7. 7.
    Niwinska, A., Murawska, M., & Pogoda, K. (2010). Breast cancer brain metastases: Differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Annals of Oncology, 21(5), 942–948.  https://doi.org/10.1093/annonc/mdp407.CrossRefPubMedGoogle Scholar
  8. 8.
    Bos, P. D., Zhang, X. H., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., et al. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009.  https://doi.org/10.1038/nature08021.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., & Welch, D. R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88(23), 1731–1737.CrossRefGoogle Scholar
  10. 10.
    Lee, J. H., & Welch, D. R. (1997). Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. International Journal of Cancer, 71(6), 1035–1044.CrossRefGoogle Scholar
  11. 11.
    Miele, M. E., Jewett, M. D., Goldberg, S. F., Hyatt, D. L., Morelli, C., Gualandi, F., Rimessi, P., Hicks, D. J., Weissman, B. E., Barbanti-Brodano, G., & Welch, D. R. (2000). A human melanoma metastasis-suppressor locus maps to 6q16.3-q23. International Journal of Cancer, 86(4), 524–528.CrossRefGoogle Scholar
  12. 12.
    Beck, B. H., & Welch, D. R. (2010). The KISS1 metastasis suppressor: A good night KISS for disseminated cancer cells. European Journal of Cancer, 46(7), 1283–1289.  https://doi.org/10.1016/j.ejca.2010.02.023.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Avendano, M. S., Vazquez, M. J., & Tena-Sempere, M. (2017). Disentangling puberty: Novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Human Reproduction Update, 23(6), 737–763.  https://doi.org/10.1093/humupd/dmx025.CrossRefPubMedGoogle Scholar
  14. 14.
    Garcia, J. P., Guerriero, K. A., Keen, K. L., Kenealy, B. P., Seminara, S. B., & Terasawa, E. (2017). Kisspeptin and neurokinin B signaling network underlies the pubertal increase in GnRH release in female rhesus monkeys. Endocrinology, 158(10), 3269–3280.  https://doi.org/10.1210/en.2017-00500.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fratangelo, F., Carriero, M. V., & Motti, M. L. (2018). Controversial role of Kisspeptins/KiSS-1R signaling system in tumor development. Front Endocrinol (Lausanne), 9, 192.  https://doi.org/10.3389/fendo.2018.00192.CrossRefGoogle Scholar
  16. 16.
    Ciaramella, V., Della Corte, C. M., Ciardiello, F., & Morgillo, F. (2018). Kisspeptin and Cancer: Molecular interaction, biological functions, and future perspectives. Front Endocrinol (Lausanne), 9, 115.  https://doi.org/10.3389/fendo.2018.00115.CrossRefGoogle Scholar
  17. 17.
    Prabhu, V. V., Sakthivel, K. M., & Guruvayoorappan, C. (2013). Kisspeptins (KiSS-1): Essential players in suppressing tumor metastasis. Asian Pacific Journal of Cancer Prevention, 14(11), 6215–6220.CrossRefGoogle Scholar
  18. 18.
    Gu, Y., Li, P., Peng, F., Zhang, M., Zhang, Y., Liang, H., Zhao, W., Qi, L., Wang, H., Wang, C., & Guo, Z. (2016). Autophagy-related prognostic signature for breast cancer. Molecular Carcinogenesis, 55(3), 292–299.  https://doi.org/10.1002/mc.22278.CrossRefPubMedGoogle Scholar
  19. 19.
    Lorin, S., Hamai, A., Mehrpour, M., & Codogno, P. (2013). Autophagy regulation and its role in cancer. Seminars in Cancer Biology, 23(5), 361–379.  https://doi.org/10.1016/j.semcancer.2013.06.007.CrossRefPubMedGoogle Scholar
  20. 20.
    Sivridis, E., Koukourakis, M. I., Zois, C. E., Ledaki, I., Ferguson, D. J., Harris, A. L., et al. (2010). LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. The American Journal of Pathology, 176(5), 2477–2489.  https://doi.org/10.2353/ajpath.2010.090049.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wei, H., Wang, C., Croce, C. M., & Guan, J. L. (2014). p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes & Development, 28(11), 1204–1216.  https://doi.org/10.1101/gad.237354.113.CrossRefGoogle Scholar
  22. 22.
    Kim, S., Jung, W. H., & Koo, J. S. (2012). Differences in autophagy-related activity by molecular subtype in triple-negative breast cancer. Tumour Biology, 33(5), 1681–1694.  https://doi.org/10.1007/s13277-012-0424-1.CrossRefPubMedGoogle Scholar
  23. 23.
    Choi, J., Jung, W., & Koo, J. S. (2013). Expression of autophagy-related markers beclin-1, light chain 3A, light chain 3B and p62 according to the molecular subtype of breast cancer. Histopathology, 62(2), 275–286.  https://doi.org/10.1111/his.12002.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao, H., Yang, M., Zhao, J., Wang, J., Zhang, Y., & Zhang, Q. (2013). High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Medical Oncology, 30(1), 475.  https://doi.org/10.1007/s12032-013-0475-1.CrossRefPubMedGoogle Scholar
  25. 25.
    Yan, C., Wang, H., & Boyd, D. D. (2001). KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha -induced block of p65/p50 nuclear translocation. The Journal of Biological Chemistry, 276(2), 1164–1172.  https://doi.org/10.1074/jbc.M008681200.CrossRefPubMedGoogle Scholar
  26. 26.
    Yin, Y., Tang, L., & Shi, L. (2017). The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes. Molecular Medicine Reports, 15(3), 1286–1290.  https://doi.org/10.3892/mmr.2017.6109.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kolioulis, I., Zafrakas, M., Grimbizis, G., Miliaras, D., Timologou, A., Bontis, J. N., & Tarlatzis, B. C. (2017). Immunohistochemical expression pattern of metastasis suppressor KISS-1 protein in adenomyosis lesions and normal endometrium. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 210, 64–68.  https://doi.org/10.1016/j.ejogrb.2016.12.004.CrossRefPubMedGoogle Scholar
  28. 28.
    Song, W. W., Gui, A. P., Li, W., Chen, H. S., & Li, J. M. (2017). Expressions of HIF-1alpha and KISS-1 in patients with liver cancer and correlation analysis. European Review for Medical and Pharmacological Sciences, 21(18), 4058–4063.PubMedGoogle Scholar
  29. 29.
    Yu, L., Zhu, B., Wu, S., Zhou, L., Song, W., Gong, X., & Wang, D. (2017). Evaluation of the correlation of vasculogenic mimicry, ALDH1, KiSS-1, and MACC1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagnostic Pathology, 12(1), 23.  https://doi.org/10.1186/s13000-017-0612-9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kaverina, N., Borovjagin, A. V., Kadagidze, Z., Baryshnikov, A., Baryshnikova, M., Malin, D., Ghosh, D., Shah, N., Welch, D. R., Gabikian, P., Karseladze, A., Cobbs, C., & Ulasov, I. V. (2017). Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy, 13(11), 1905–1923.  https://doi.org/10.1080/15548627.2017.1360466.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kim, T. H., & Cho, S. G. (2017). Melatonin-induced KiSS1 expression inhibits triple-negative breast cancer cell invasiveness. Oncology Letters, 14(2), 2511–2516.  https://doi.org/10.3892/ol.2017.6434.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chen, S., Chen, W., Zhang, X., Lin, S., & Chen, Z. (2016). Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-kappaB signal pathway. International Journal of Oncology, 48(4), 1391–1398.  https://doi.org/10.3892/ijo.2016.3368.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang, J. A., Song, C. I., Hughes, J. K., Kreisman, M. J., Parra, R. A., Haisenleder, D. J., Kauffman, A. S., & Breen, K. M. (2017). Acute psychosocial stress inhibits LH Pulsatility and Kiss1 neuronal activation in female mice. Endocrinology, 158(11), 3716–3723.  https://doi.org/10.1210/en.2017-00301.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pruszynska-Oszmalek, E., Kolodziejski, P. A., Sassek, M., & Sliwowska, J. H. (2017). Kisspeptin-10 inhibits proliferation and regulates lipolysis and lipogenesis processes in 3T3-L1 cells and isolated rat adipocytes. Endocrine, 56(1), 54–64.  https://doi.org/10.1007/s12020-017-1248-y.CrossRefPubMedGoogle Scholar
  35. 35.
    Manley, S. J., Liu, W., & Welch, D. R. (2017). The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. Journal of Molecular Medicine (Berlin, Germany), 95(9), 951–963.  https://doi.org/10.1007/s00109-017-1552-2.CrossRefGoogle Scholar
  36. 36.
    Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nature Reviews. Molecular Cell Biology, 8(9), 741–752.  https://doi.org/10.1038/nrm2239.CrossRefPubMedGoogle Scholar
  37. 37.
    Xu, M. F., Zang, S. B., Liu, J. F., Gao, L. Y., Gao, M. Q., Yang, Y. H., & Huang, A. M. (2012). An in vitro study of the relationship between KiSS-1 expression and hepatoma carcinoma cell proliferation, adhesion, and invasion. Zhonghua Gan Zang Bing Za Zhi, 20(12), 925–929.  https://doi.org/10.3760/cma.j.issn.1007-3418.2012.12.011.CrossRefPubMedGoogle Scholar
  38. 38.
    Ikeguchi, M., Yamaguchi, K., & Kaibara, N. (2004). Clinical significance of the loss of KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clinical Cancer Research, 10(4), 1379–1383.CrossRefGoogle Scholar
  39. 39.
    Kim, S. J., Kim, J. S., Park, E. S., Lee, J. S., Lin, Q., Langley, R. R., Maya, M., He, J., Kim, S. W., Weihua, Z., Balasubramanian, K., Fan, D., Mills, G. B., Hung, M. C., & Fidler, I. J. (2011). Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia, 13(3), 286–298.CrossRefGoogle Scholar
  40. 40.
    Nash, K. T., Phadke, P. A., Navenot, J. M., Hurst, D. R., Accavitti-Loper, M. A., Sztul, E., Vaidya, K. S., Frost, A. R., Kappes, J. C., Peiper, S. C., & Welch, D. R. (2007). Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. Journal of the National Cancer Institute, 99(4), 309–321.  https://doi.org/10.1093/jnci/djk053.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shoji, S., Tang, X. Y., Umemura, S., Itoh, J., Takekoshi, S., Shima, M., Usui, Y., Nagata, Y., Uchida, T., Osamura, R. Y., & Terachi, T. (2009). Metastin inhibits migration and invasion of renal cell carcinoma with overexpression of metastin receptor. European Urology, 55, 441–449.CrossRefGoogle Scholar
  42. 42.
    Yoshioka, K., Ohno, Y., Horiguchi, Y., Ozu, C., Namiki, K., & Tachibana, M. (2008). Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression. Life Sciences, 83, 332–338.CrossRefGoogle Scholar
  43. 43.
    Dhar, D. K., Naora, H., Kubota, H., Maruyama, R., Yoshimura, H., Tonomoto, Y., Tachibana, M., Ono, T., Otani, H., & Nagasue, N. (2004). Downregulation of KiSS-1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. International Journal of Cancer, 111, 868–872.CrossRefGoogle Scholar
  44. 44.
    Li, N., Li, S. S., Zhang, H. Y., Xuan, X. Y., Zheng, X. Z., Wang, F., & Yan, A. H. (2009). Effect of KISS-1 on invasive potential and proliferation of esophageal squamous carcinoma cell line EC-1. Zhonghua Bing Li Xue Za Zhi, 38, 263–267.PubMedGoogle Scholar
  45. 45.
    Olbrich, T., Ziegler, E., Turk, G., Schubert, A., Emons, G., & Grundker, C. (2010). Kisspeptin-10 inhibits bone-directed migration of GPR54-positive breast cancer cells: Evidence for a dose-window effect. Gynecologic Oncology, 119, 571–578.CrossRefGoogle Scholar
  46. 46.
    Ji, K., Ye, L., Ruge, F., Hargest, R., Mason, M. D., & Jiang, W. G. (2014). Implication of metastasis suppressor gene, Kiss-1 and its receptor kiss-1R in colorectal cancer. BMC Cancer, 14, 723.CrossRefGoogle Scholar
  47. 47.
    Lee, J. H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Research, 57, 2384–2387.PubMedGoogle Scholar
  48. 48.
    Jiang, Y., Berk, M., Singh, L. S., Tan, H., Yin, L., Powell, C. T., & Xu, Y. (2005). KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical & Experimental Metastasis, 22, 369–376.CrossRefGoogle Scholar
  49. 49.
    Xu, J., Acharya, S., Sahin, O., Zhang, Q., Saito, Y., Yao, J., Wang, H., Li, P., Zhang, L., Lowery, F. J., Kuo, W. L., Xiao, Y., Ensor, J., Sahin, A. A., Zhang, X. H. F., Hung, M. C., Zhang, J. D., & Yu, D. (2015). 14-3-3zeta turns TGF-beta's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell, 27(2), 177–192.  https://doi.org/10.1016/j.ccell.2014.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Singh, R., Bhatt, M. L., Singh, S. P., Kumar, V., Goel, M. M., Mishra, D. P., et al. (2016). Evaluation of KiSS1 as a prognostic biomarker in north Indian breast Cancer cases. Asian Pacific Journal of Cancer Prevention, 17(4), 1789–1795.CrossRefGoogle Scholar
  51. 51.
    Navenot, J. M., Wang, Z., Chopin, M., Fujii, N., & Peiper, S. C. (2005). Kisspeptin-10-induced signaling of GPR54 negatively regulates chemotactic responses mediated by CXCR4: A potential mechanism for the metastasis suppressor activity of kisspeptins. Cancer Research, 65(22), 10450–10456.  https://doi.org/10.1158/0008-5472.CAN-05-1757.CrossRefPubMedGoogle Scholar
  52. 52.
    Castano, J. P., Martinez-Fuentes, A. J., Gutierrez-Pascual, E., Vaudry, H., Tena-Sempere, M., & Malagon, M. M. (2009). Intracellular signaling pathways activated by kisspeptins through GPR54: Do multiple signals underlie function diversity? Peptides, 30(1), 10–15.  https://doi.org/10.1016/j.peptides.2008.07.025.CrossRefPubMedGoogle Scholar
  53. 53.
    Platonov, M. E., Borovjagin, A. V., Kaverina, N., Xiao, T., Kadagidze, Z., Lesniak, M., Baryshnikova, M., & Ulasov, I. V. (2018). KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. Cancer Letters, 417, 75–88.  https://doi.org/10.1016/j.canlet.2017.12.024.CrossRefPubMedGoogle Scholar
  54. 54.
    Chakravarty, G., Rider, B., & Mondal, D. (2011). Cytoplasmic compartmentalization of SOX9 abrogates the growth arrest response of breast cancer cells that can be rescued by trichostatin a treatment. Cancer Biology & Therapy, 11(1), 71–83.CrossRefGoogle Scholar
  55. 55.
    Guo, W., Keckesova, Z., Donaher, J. L., Shibue, T., Tischler, V., Reinhardt, F., Itzkovitz, S., Noske, A., Zürrer-Härdi, U., Bell, G., Tam, W. L., Mani, S. A., van Oudenaarden, A., & Weinberg, R. A. (2012). Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 148(5), 1015–1028.  https://doi.org/10.1016/j.cell.2012.02.008.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chakravarty, G., Moroz, K., Makridakis, N. M., Lloyd, S. A., Galvez, S. E., Canavello, P. R., Lacey, M. R., Agrawal, K., & Mondal, D. (2011). Prognostic significance of cytoplasmic SOX9 in invasive ductal carcinoma and metastatic breast cancer. Experimental Biology and Medicine (Maywood, N.J.), 236(2), 145–155.  https://doi.org/10.1258/ebm.2010.010086.CrossRefGoogle Scholar
  57. 57.
    Jarzabek, K., Koda, M., Kozlowski, L., Milewski, R., & Wolczynski, S. (2015). Immunohistochemical study of KiSS1 and KiSS1R expression in human primary breast cancer: Association with breast cancer receptor status, proliferation markers and clinicopathological features. Histology and Histopathology, 30(6), 715–723.  https://doi.org/10.14670/HH-30.715.CrossRefPubMedGoogle Scholar
  58. 58.
    Ulasov, I. V., Kaverina, N. V., Pytel, P., Thaci, B., Liu, F., Hurst, D. R., Welch, D. R., Sattar, H. A., Olopade, O. I., Baryshnikov, A. Y., Kadagidze, Z. G., & Lesniak, M. S. (2012). Clinical significance of KISS1 protein expression for brain invasion and metastasis. Cancer, 118(8), 2096–2105.  https://doi.org/10.1002/cncr.26525.CrossRefPubMedGoogle Scholar
  59. 59.
    Papaoiconomou, E., Lymperi, M., Petraki, C., Philippou, A., Msaouel, P., Michalopoulou, F., et al. (2014). Kiss-1/GPR54 protein expression in breast cancer. Anticancer Research, 34(3), 1401–1407.PubMedGoogle Scholar
  60. 60.
    Kang, C., Xu, Q., Martin, T. D., Li, M. Z., Demaria, M., Aron, L., Lu, T., Yankner, B. A., Campisi, J., & Elledge, S. J. (2015). The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science, 349(6255), aaa5612.  https://doi.org/10.1126/science.aaa5612.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang, H., He, L., Ma, F., Regan, M. M., Balk, S. P., Richardson, A. L., & Yuan, X. (2013). SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/beta-catenin activation in breast cancer. The Journal of Biological Chemistry, 288(9), 6478–6487.  https://doi.org/10.1074/jbc.M112.419184.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Malki, S., Nef, S., Notarnicola, C., Thevenet, L., Gasca, S., Mejean, C., et al. (2005). Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. The EMBO Journal, 24(10), 1798–1809.  https://doi.org/10.1038/sj.emboj.7600660.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chavez, R. D., Coricor, G., Perez, J., Seo, H. S., & Serra, R. (2017). SOX9 protein is stabilized by TGF-beta and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthritis and Cartilage, 25(2), 332–340.  https://doi.org/10.1016/j.joca.2016.10.007.CrossRefPubMedGoogle Scholar
  64. 64.
    Kurnaz, E., Sen, Y., & Aydin, S. (2017). Plasma kisspeptin and ghrelin levels in puberty variant cases. Journal of Pediatric Endocrinology & Metabolism, 30(5), 569–573.  https://doi.org/10.1515/jpem-2016-0127.CrossRefGoogle Scholar
  65. 65.
    Celik, F., Belviranli, M., & Okudan, N. (2016). Circulating levels of leptin, nesfatin-1 and kisspeptin in postmenopausal obese women. Archives of Physiology and Biochemistry, 122(4), 195–199.  https://doi.org/10.3109/13813455.2016.1171365.CrossRefPubMedGoogle Scholar
  66. 66.
    Jayasena, C. N., Comninos, A. N., Januszewski, A., Gabra, H., Taylor, A., Harvey, R. A., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2012). Plasma kisspeptin: A potential biomarker of tumor metastasis in patients with ovarian carcinoma. Clinical Chemistry, 58(6), 1061–1063.  https://doi.org/10.1373/clinchem.2011.177667.CrossRefPubMedGoogle Scholar
  67. 67.
    Dhillo, W. S., Savage, P., Murphy, K. G., Chaudhri, O. B., Patterson, M., Nijher, G. M., Foggo, V. M., Dancey, G. S., Mitchell, H., Seckl, M. J., Ghatei, M. A., & Bloom, S. R. (2006). Plasma kisspeptin is raised in patients with gestational trophoblastic neoplasia and falls during treatment. American Journal of Physiology: Endocrinology and Metabolism, 291(5), E878–E884.  https://doi.org/10.1152/ajpendo.00555.2005.CrossRefPubMedGoogle Scholar
  68. 68.
    Martino, N. A., Rizzo, A., Pizzi, F., Dell'Aquila, M. E., & Sciorsci, R. L. (2015). Effects of kisspeptin-10 on in vitro proliferation and kisspeptin receptor expression in primary epithelial cell cultures isolated from bovine placental cotyledons of fetuses at the first trimester of pregnancy. Theriogenology, 83(6), 978–987 e971.  https://doi.org/10.1016/j.theriogenology.2014.11.033.CrossRefPubMedGoogle Scholar
  69. 69.
    Song, W., Li, K., Sun, C., & Xue, J. (2017). Kisspeptin permits the sexual development of female rats with normal and precocious puberty but is not a trigger for it. Neuro Endocrinology Letters, 38(6), 422–428.PubMedGoogle Scholar
  70. 70.
    Dhillo, W. S., Murphy, K. G., & Bloom, S. R. (2007). The neuroendocrine physiology of kisspeptin in the human. Reviews in Endocrine & Metabolic Disorders, 8(1), 41–46.  https://doi.org/10.1007/s11154-007-9029-1.CrossRefGoogle Scholar
  71. 71.
    Karapanagiotou, E. M., Dilana, K. D., Gkiozos, I., Gratsias, I., Tsimpoukis, S., Polyzos, A., & Syrigos, K. N. (2011). Metastin is not involved in metastatic potential of non-small cell lung cancer. Medical Oncology, 28(2), 559–564.  https://doi.org/10.1007/s12032-010-9466-7.CrossRefPubMedGoogle Scholar
  72. 72.
    Curtis, A. E., Murphy, K. G., Chaudhri, O. B., Ramachandran, R., Young, A. M., Waxman, J., Nijher, G. M., Bewick, G. A., Ghatei, M. A., Bloom, S. R., & Dhillo, W. S. (2010). Kisspeptin is released from human prostate cancer cell lines but plasma kisspeptin is not elevated in patients with prostate cancer. Oncology Reports, 23(6), 1729–1734.PubMedGoogle Scholar
  73. 73.
    Katagiri, F., Nagai, K., Kida, A., Tomita, K., Oishi, S., Takeyama, M., Doi, R., & Fujii, N. (2009). Clinical significance of plasma metastin level in pancreatic cancer patients. Oncology Reports, 21(3), 815–819.PubMedGoogle Scholar
  74. 74.
    Ergen, A., Canbay, E., Bugra, D., Zeybek, U., Yamaner, S., & Bulut, T. (2012). Plasma Kisspeptin-54 levels in gastric cancer patients. International Journal of Surgery, 10(9), 551–554.  https://doi.org/10.1016/j.ijsu.2012.08.014.CrossRefPubMedGoogle Scholar
  75. 75.
    Jarzabek, K., Kozlowski, L., Milewski, R., & Wolczynski, S. (2012). KiSS1/GPR54 and estrogen-related gene expression profiles in primary breast cancer. Oncology Letters, 3(4), 930–934.  https://doi.org/10.3892/ol.2012.582.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Degenhardt, T., Wuerstlein, R., Eggersmann, T., & Harbeck, N. (2018). The safety of palbociclib for the treatment of advanced breast cancer. Expert Opinion on Drug Safety, 17(3), 325–330.  https://doi.org/10.1080/14740338.2018.1429402.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang, C. H., Qiao, C., Wang, R. C., & Zhou, W. P. (2016). KiSS1mediated suppression of the invasive ability of human pancreatic carcinoma cells is not dependent on the level of KiSS1 receptor GPR54. Molecular Medicine Reports, 13(1), 123–129.  https://doi.org/10.3892/mmr.2015.4535.CrossRefPubMedGoogle Scholar
  78. 78.
    Schafer-Somi, S., Ay, S. S., Kaya, D., Sozmen, M., Beceriklisoy, H. B., Agaoglu, A. R., et al. (2017). Kisspeptin-10 and the G protein-coupled receptor 54 are differentially expressed in the canine pregnant uterus and trophoblast cells. Reproduction in Domestic Animals, 52(Suppl 2), 123–129.  https://doi.org/10.1111/rda.12818.CrossRefPubMedGoogle Scholar
  79. 79.
    Clarke, R. B., Anderson, E., & Howell, A. (2004). Steroid receptors in human breast cancer. Trends in Endocrinology and Metabolism, 15(7), 316–323.  https://doi.org/10.1016/j.tem.2004.07.004.CrossRefPubMedGoogle Scholar
  80. 80.
    Nauroth, A., Kalder, M., Rossler, M., Wichmann, G., Dietz, A., & Wiegand, S. (2017). Conversion of hormone and HER-2 receptor in metachronous neck metastases from breast carcinoma. Journal of Cancer Research and Clinical Oncology, 143(9), 1811–1814.  https://doi.org/10.1007/s00432-017-2426-2.CrossRefPubMedGoogle Scholar
  81. 81.
    Chen, S. Q., Tu, M. M., Dai, Q. B., Lin, S. Y., & Ke, C. L. (2012). Kiss-1 gene expression after radiation and its association with proliferation and apoptosis in colorectal cancer cells. Zhonghua Wei Chang Wai Ke Za Zhi, 15(5), 508–511.PubMedGoogle Scholar
  82. 82.
    Ramaesh, T., Logie, J. J., Roseweir, A. K., Millar, R. P., Walker, B. R., Hadoke, P. W., et al. (2010). Kisspeptin-10 inhibits angiogenesis in human placental vessels ex vivo and endothelial cells in vitro. Endocrinology, 151(12), 5927–5934.  https://doi.org/10.1210/en.2010-0565.CrossRefPubMedGoogle Scholar
  83. 83.
    Cheng, S., Castillo, V., Eliaz, I., & Sliva, D. (2015). Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling. International Journal of Oncology, 46(6), 2293–2298.  https://doi.org/10.3892/ijo.2015.2950.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Guzman, S., Brackstone, M., Radovick, S., Babwah, A. V., & Bhattacharya, M. M. (2018). KISS1/KISS1R in Cancer: Friend or foe? Front Endocrinol (Lausanne), 9, 437.  https://doi.org/10.3389/fendo.2018.00437.CrossRefGoogle Scholar
  85. 85.
    Schmid, K., Wang, X., Haitel, A., Sieghart, W., Peck-Radosavljevic, M., Bodingbauer, M., Rasoul-Rockenschaub, S., & Wrba, F. (2007). KiSS-1 overexpression as an independent prognostic marker in hepatocellular carcinoma: An immunohistochemical study. Virchows Archiv, 450(2), 143–149.  https://doi.org/10.1007/s00428-006-0352-9.CrossRefPubMedGoogle Scholar
  86. 86.
    McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., Huang, Z. Q., Grizzle, W. E., Stockard, C. R., Nash, K. T., & Buchsbaum, D. J. (2010). KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical and Experimental Metastasis, 27(8), 591–600.  https://doi.org/10.1007/s10585-010-9349-5.CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang, B., Li, A., Zuo, F., Yu, R., Zeng, Z., Ma, H., & Chen, S. (2016). Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells. Microbial Cell Factories, 15(1), 102.  https://doi.org/10.1186/s12934-016-0506-7.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Teng, Y., Liu, M., & Cowell, J. K. (2011). Functional interrelationship between the WASF3 and KISS1 metastasis-associated genes in breast cancer cells. International Journal of Cancer, 129(12), 2825–2835.  https://doi.org/10.1002/ijc.25964.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sossey-Alaoui, K., Ranalli, T. A., Li, X., Bakin, A. V., & Cowell, J. K. (2005). WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Experimental Cell Research, 308(1), 135–145.  https://doi.org/10.1016/j.yexcr.2005.04.011.CrossRefPubMedGoogle Scholar
  90. 90.
    Sossey-Alaoui, K., Safina, A., Li, X., Vaughan, M. M., Hicks, D. G., Bakin, A. V., & Cowell, J. K. (2007). Down-regulation of WAVE3, a metastasis promoter gene, inhibits invasion and metastasis of breast cancer cells. American Journal of Pathology, 170(6), 2112–2121.  https://doi.org/10.2353/ajpath.2007.060975.CrossRefPubMedGoogle Scholar
  91. 91.
    Gertsch, J., & Anavi-Goffer, S. (2012). Methylhonokiol attenuates neuroinflammation: A role for cannabinoid receptors? Journal of Neuroinflammation, 9, 135.  https://doi.org/10.1186/1742-2094-9-135.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhang, P., Liu, X., Zhu, Y., Chen, S., Zhou, D., & Wang, Y. (2013). Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-kappaB activation and cytokine production of glial cells. Neuroscience Letters, 534, 123–127.  https://doi.org/10.1016/j.neulet.2012.11.052.CrossRefPubMedGoogle Scholar
  93. 93.
    Rodriguez-Cueto, C., Benito, C., Fernandez-Ruiz, J., Romero, J., Hernandez-Galvez, M., & Gomez-Ruiz, M. (2014). Changes in CB(1) and CB(2) receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias. British Journal of Pharmacology, 171(6), 1472–1489.  https://doi.org/10.1111/bph.12283.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kim, C. W., Hwang, K. A., & Choi, K. C. (2016). Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine, 23(14), 1787–1796.  https://doi.org/10.1016/j.phymed.2016.10.016.CrossRefPubMedGoogle Scholar
  95. 95.
    Kawano, K., Hattori, Y., Iwakura, H., Akamizu, T., & Maitani, Y. (2013). Combination therapy with gefitinib and doxorubicin inhibits tumor growth in transgenic mice with adrenal neuroblastoma. Cancer Medicine, 2(3), 286–295.  https://doi.org/10.1002/cam4.76.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Nwachukwu, J. C., Srinivasan, S., Bruno, N. E., Parent, A. A., Hughes, T. S., Pollock, J. A., Gjyshi, O., Cavett, V., Nowak, J., Garcia-Ordonez, R. D., Houtman, R., Griffin, P. R., Kojetin, D. J., Katzenellenbogen, J. A., Conkright, M. D., & Nettles, K. W. (2014). Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. Elife, 3, e02057.  https://doi.org/10.7554/eLife.02057.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Poulin, R., Baker, D., Poirier, D., & Labrie, F. (1991). Multiple actions of synthetic 'progestins' on the growth of ZR-75-1 human breast cancer cells: An in vitro model for the simultaneous assay of androgen, progestin, estrogen, and glucocorticoid agonistic and antagonistic activities of steroids. Breast Cancer Research and Treatment, 17(3), 197–210.CrossRefGoogle Scholar
  98. 98.
    Selvaraj, S., Sun, Y., Sukumaran, P., & Singh, B. B. (2016). Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Molecular Carcinogenesis, 55(5), 818–831.  https://doi.org/10.1002/mc.22324.CrossRefPubMedGoogle Scholar
  99. 99.
    Terasaka, T., Otsuka, F., Tsukamoto, N., Nakamura, E., Inagaki, K., Toma, K., Ogura-Ochi, K., Glidewell-Kenney, C., Lawson, M. A., & Makino, H. (2013). Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Molecular and Cellular Endocrinology, 381(1–2), 8–15.  https://doi.org/10.1016/j.mce.2013.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Johnstone, C. N., Pattison, A. D., Gorringe, K. L., Harrison, P. F., Powell, D. R., Lock, P., Baloyan, D., Ernst, M., Stewart, A. G., Beilharz, T. H., & Anderson, R. L. (2018). Functional and genomic characterisation of a xenograft model system for the study of metastasis in triple-negative breast cancer. Disease Models & Mechanisms, 11(5), dmm032250.  https://doi.org/10.1242/dmm.032250.CrossRefGoogle Scholar
  101. 101.
    Otsuka, F., Tsukamoto, N., Miyoshi, T., Iwasaki, Y., & Makino, H. (2012). BMP action in the pituitary: Its possible role in modulating somatostatin sensitivity in pituitary tumor cells. Molecular and Cellular Endocrinology, 349(2), 105–110.  https://doi.org/10.1016/j.mce.2011.10.017.CrossRefPubMedGoogle Scholar
  102. 102.
    Golzar, F., Javanmard, S. H., Bahrambeigi, V., & Rafiee, L. (2015). The effect of Kisspeptin-10 on mesenchymal stem cells migration in vitro and in vivo. Adv Biomed Res, 4, 20.  https://doi.org/10.4103/2277-9175.149851.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Zajac, M., Law, J., Cvetkovic, D. D., Pampillo, M., McColl, L., Pape, C., di Guglielmo, G. M., Postovit, L. M., Babwah, A. V., & Bhattacharya, M. (2011). GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One, 6(6), e21599.  https://doi.org/10.1371/journal.pone.0021599.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Chaudary, N., Pintilie, M., Jelveh, S., Lindsay, P., Hill, R. P., & Milosevic, M. (2017). Plerixafor improves primary tumor response and reduces metastases in cervical Cancer treated with radio-chemotherapy. Clinical Cancer Research, 23(5), 1242–1249.  https://doi.org/10.1158/1078-0432.CCR-16-1730.CrossRefPubMedGoogle Scholar
  105. 105.
    Taromi, S., Kayser, G., Catusse, J., von Elverfeldt, D., Reichardt, W., Braun, F., Weber, W. A., Zeiser, R., & Burger, M. (2016). CXCR4 antagonists suppress small cell lung cancer progression. Oncotarget, 7(51), 85185–85195.  https://doi.org/10.18632/oncotarget.13238.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Hainsworth, J. D., Reeves, J. A., Mace, J. R., Crane, E. J., Hamid, O., Stille, J. R., Flynt, A., Roberson, S., Polzer, J., & Arrowsmith, E. R. (2016). A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with Sunitinib versus Sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Targeted Oncology, 11(5), 643–653.  https://doi.org/10.1007/s11523-016-0434-9.CrossRefPubMedGoogle Scholar
  107. 107.
    Karanika, S., Karantanos, T., Kurosaka, S., Wang, J., Hirayama, T., Yang, G., Park, S., Golstov, A. A., Tanimoto, R., Li, L., & Thompson, T. C. (2015). GLIPR1-DeltaTM synergizes with docetaxel in cell death and suppresses resistance to docetaxel in prostate cancer cells. Molecular Cancer, 14, 122.  https://doi.org/10.1186/s12943-015-0395-0.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wyler, L., Napoli, C. U., Ingold, B., Sulser, T., Heikenwalder, M., Schraml, P., et al. (2014). Brain metastasis in renal cancer patients: Metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. British Journal of Cancer, 110(3), 686–694.  https://doi.org/10.1038/bjc.2013.755.CrossRefPubMedGoogle Scholar
  109. 109.
    Cavallaro, S. (2013). CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. International Journal of Molecular Sciences, 14(1), 1713–1727.  https://doi.org/10.3390/ijms14011713.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Chen, Y., & Wang, X. (2017). Mechanisms of AEG-1 and CXCR4 gene expression regulating the epithelial-mesenchymal transition pathway involved in brain metastases of breast cancer. Journal of BUON, 22(4), 953–957.PubMedGoogle Scholar
  111. 111.
    Bilban, M., Ghaffari-Tabrizi, N., Hintermann, E., Bauer, S., Molzer, S., Zoratti, C., et al. (2004). Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. Journal of Cell Science, 117(Pt 8), 1319–1328, doi: https://doi.org/10.1242/jcs.00971.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ilya V. Ulasov
    • 1
    Email author
  • Anton V. Borovjagin
    • 2
  • Peter Timashev
    • 3
  • Massimo Cristofanili
    • 4
  • Danny R. Welch
    • 5
  1. 1.Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  2. 2.Department of Biomedical EngineeringUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Institute for Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  4. 4.Department of Medicine, Division of Hematology-OncologyNorthwestern UniversityChicagoUSA
  5. 5.Department of Cancer BiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations