Advertisement

Spatio-temporal modeling and live-cell imaging of proteolysis in the 4D microenvironment of breast cancer

  • Kyungmin Ji
  • Mansoureh Sameni
  • Kingsley Osuala
  • Kamiar Moin
  • Raymond R. Mattingly
  • Bonnie F. SloaneEmail author
Article

Abstract

Cells grown in three dimensions (3D) within natural extracellular matrices or synthetic scaffolds more closely recapitulate the phenotype of those cells within tissues in regard to normal developmental and pathobiological processes. This includes degradation of the surrounding stroma as the cells migrate and invade through the matrices. As 3D cultures of tumor cells predict efficacy of, and resistance to, a wide variety of cancer therapies, we employed tissue-engineering approaches to establish 3D pathomimetic avatars of human breast cancer cells alone and in the context of both their cellular and pathochemical microenvironments. We have shown that we can localize and quantify key parameters of malignant progression by live-cell imaging of the 3D avatars over time (4D). One surrogate for changes in malignant progression is matrix degradation, which can be localized and quantified by our live-cell proteolysis assay. This assay is predictive of changes in spatio-temporal and dynamic interactions among the co-cultured cells and changes in viability, proliferation, and malignant phenotype. Furthermore, our live-cell proteolysis assay measures the effect of small-molecule inhibitors of proteases and kinases, neutralizing or blocking antibodies to cytokines and photodynamic therapy on malignant progression. We suggest that 3D/4D pathomimetic avatars in combination with our live-cell proteolysis assays will be a useful preclinical screening platform for cancer therapies. Our ultimate goal is to develop 3D/4D avatars from an individual patient’s cancer in which we can screen “personalized medicine” therapies using changes in proteolytic activity to quantify therapeutic efficacy.

Keywords

Spatio-temporal modeling Proteolysis Live-cell imaging 3D cultures 

Notes

Funding information

This work was supported in part by National Institute of Health grants R01 CA131990 (RRM and BFS) and R21 CA1759331 (BFS), a Department of Defense Breast Cancer Research Program Postdoctoral Fellowship Award (W81XWH-12-1-0024; KO), and an award from the President’s Research Enhancement Program of Wayne State University (BFS). Imaging was performed in the Microscopy, Imaging and Cytometry Resources Core (KM), which is supported, in part, by National Institutes of Health Center grant P30 CA022453 to the Karmanos Cancer Institute at Wayne State University, and the Perinatology Research Branch of the National Institute of Child Health and Development at Wayne State University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Debnath, J., & Brugge, J. S. (2005). Modelling glandular epithelial cancers in three-dimensional cultures. Nature Reviews. Cancer, 5(9), 675–688.  https://doi.org/10.1038/nrc1695.CrossRefPubMedGoogle Scholar
  2. 2.
    Martin, K. J., Patrick, D. R., Bissell, M. J., & Fournier, M. V. (2008). Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One, 3(8), e2994.  https://doi.org/10.1371/journal.pone.0002994.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weigelt, B., Ghajar, C. M., & Bissell, M. J. (2014). The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Advanced Drug Delivery Reviews, 69-70, 42–51.  https://doi.org/10.1016/j.addr.2014.01.001.CrossRefPubMedGoogle Scholar
  4. 4.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(1), 7–34.  https://doi.org/10.3322/caac.21551.CrossRefGoogle Scholar
  5. 5.
    Li, Q., Mullins, S. R., Sloane, B. F., & Mattingly, R. R. (2008). p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia, 10(4), 314–329.CrossRefGoogle Scholar
  6. 6.
    Li, Q., Chow, A. B., & Mattingly, R. R. (2010). Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 332(3), 821–828.  https://doi.org/10.1124/jpet.109.160390.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nam, J. M., Onodera, Y., Bissell, M. J., & Park, C. C. (2010). Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Research, 70(13), 5238–5248.  https://doi.org/10.1158/0008-5472.CAN-09-2319.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maguire, S. L., Peck, B., Wai, P. T., Campbell, J., Barker, H., Gulati, A., Daley, F., Vyse, S., Huang, P., Lord, C. J., Farnie, G., Brennan, K., & Natrajan, R. (2016). Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. The Journal of Pathology, 240(3), 315–328.  https://doi.org/10.1002/path.4778.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brock, E. J., Ji, K., Shah, S., Mattingly, R. R., & Sloane, B. F. (2019). In vitro models for studying invasive transitions of ductal carcinoma in situ. Journal of Mammary Gland Biology and Neoplasia, 24(1), 1–15.  https://doi.org/10.1007/s10911-018-9405-3.CrossRefPubMedGoogle Scholar
  10. 10.
    Herschkowitz, J. I., & Behbod, F. (2018). Advances in DCIS research and treatment. [journal issue]. Journal of Mammary Gland Biology and Neoplasia, 23 & 24, 1–301.  https://doi.org/10.1007/s10911-018-9419-x.CrossRefGoogle Scholar
  11. 11.
    Edwards, D., Hoyer-Hansen, G., Blasi, F., & Sloane, B. F. (2008). The cancer degradome: protease and cancer biology. New York: Springer.CrossRefGoogle Scholar
  12. 12.
    Sloane, B. F., List, K., Fingleton, B., & Matrisian, L. (2013). Proteases: structure and function. New York: Springer.Google Scholar
  13. 13.
    Darvishian, F., Ozerdem, U., Adams, S., Chun, J., Pirraglia, E., Kaplowitz, E., Guth, A., Axelrod, D., Shapiro, R., Price, A., Troxel, A., Schnabel, F., & Roses, D. (2019). Tumor-infiltrating lymphocytes in a contemporary cohort of women with ductal carcinoma in situ (DCIS). Annals of Surgical Oncology, 26(10), 3337–3343.  https://doi.org/10.1245/s10434-019-07562-x.CrossRefGoogle Scholar
  14. 14.
    Grugan, K. D., McCabe, F. L., Kinder, M., Greenplate, A. R., Harman, B. C., Ekert, J. E., van Rooijen, N., Anderson, G. M., Nemeth, J. A., Strohl, W. R., Jordan, R. E., & Brezski, R. J. (2012). Tumor-associated macrophages promote invasion while retaining Fc-dependent anti-tumor function. Journal of Immunology, 189(11), 5457–5466.  https://doi.org/10.4049/jimmunol.1201889.CrossRefGoogle Scholar
  15. 15.
    Shree, T., Olson, O. C., Elie, B. T., Kester, J. C., Garfall, A. L., Simpson, K., Bell-McGuinn, K. M., Zabor, E. C., Brogi, E., & Joyce, J. A. (2011). Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes & Development, 25(23), 2465–2479.  https://doi.org/10.1101/gad.180331.111.CrossRefGoogle Scholar
  16. 16.
    Erdogan, B., & Webb, D. J. (2017). Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochemical Society Transactions, 45(1), 229–236.  https://doi.org/10.1042/BST20160387.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qiu, S. Q., Waaijer, S. J. H., Zwager, M. C., de Vries, E. G. E., van der Vegt, B., & Schroder, C. P. (2018). Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treatment Reviews, 70, 178–189.  https://doi.org/10.1016/j.ctrv.2018.08.010.CrossRefPubMedGoogle Scholar
  18. 18.
    Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Santner, S. J., Dawson, P. J., Tait, L., Soule, H. D., Eliason, J., Mohamed, A. N., Wolman, S. R., Heppner, G. H., & Miller, F. R. (2001). Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Research and Treatment, 65(2), 101–110.CrossRefGoogle Scholar
  20. 20.
    Miller, F. R., Santner, S. J., Tait, L., & Dawson, P. J. (2000). MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. Journal of the National Cancer Institute, 92(14), 1185–1186.  https://doi.org/10.1093/jnci/92.14.1185a.CrossRefPubMedGoogle Scholar
  21. 21.
    Sameni, M., Cavallo-Medved, D., Franco, O. E., Chalasani, A., Ji, K., Aggarwal, N., Anbalagan, A., Chen, X., Mattingly, R. R., Hayward, S. W., & Sloane, B. F. (2017). Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Research, 19(1), 56.  https://doi.org/10.1186/s13058-017-0847-0.CrossRefPubMedGoogle Scholar
  22. 22.
    Polyak, K., & Hu, M. (2005). Do myoepithelial cells hold the key for breast tumor progression? Journal of Mammary Gland Biology and Neoplasia, 10(3), 231–247.  https://doi.org/10.1007/s10911-005-9584-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Labernadie, A., Kato, T., Brugues, A., Serra-Picamal, X., Derzsi, S., Arwert, E., et al. (2017). A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nature Cell Biology, 19(3), 224–237.  https://doi.org/10.1038/ncb3478.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sameni, M., Tovar, E. A., Essenburg, C. J., Chalasani, A., Linklater, E. S., Borgman, A., Cherba, D. M., Anbalagan, A., Winn, M. E., Graveel, C. R., & Sloane, B. F. (2016). Cabozantinib (XL184) inhibits growth and invasion of preclinical TNBC models. Clinical Cancer Research, 22(4), 923–934.  https://doi.org/10.1158/1078-0432.CCR-15-0187.CrossRefPubMedGoogle Scholar
  25. 25.
    Cavallo-Medved, D., Rudy, D., Blum, G., Bogyo, M., Caglic, D., & Sloane, B. F. (2009). Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Experimental Cell Research, 315(7), 1234–1246.  https://doi.org/10.1016/j.yexcr.2009.01.021.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Osuala, K. O., Sameni, M., Shah, S., Aggarwal, N., Simonait, M. L., Franco, O. E., Hong, Y., Hayward, S. W., Behbod, F., Mattingly, R. R., & Sloane, B. F. (2015). Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer, 15, 584.  https://doi.org/10.1186/s12885-015-1576-3.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jedeszko, C., Sameni, M., Olive, M. B., Moin, K., & Sloane, B. F. (2008). Visualizing protease activity in living cells: from two dimensions to four dimensions. Current Protocols in Cell Biology, 39(1), 4.20.1–4.20.  https://doi.org/10.1002/0471143030.cb0420s39.CrossRefGoogle Scholar
  28. 28.
    Chalasani, A., Ji, K., Sameni, M., Mazumder, S. H., Xu, Y., Moin, K., et al. (2017). Live-cell imaging of protease activity: assays to screen therapeutic approaches. Methods in Molecular Biology, 1574, 215–225.  https://doi.org/10.1007/978-1-4939-6850-3_16.CrossRefPubMedGoogle Scholar
  29. 29.
    Ji, K., Mayernik, L., Moin, K., & Sloane, B. F. (2019). Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Reviews, 38(1–2), 103–112.  https://doi.org/10.1007/s10555-019-09796-3.CrossRefPubMedGoogle Scholar
  30. 30.
    Rothberg, J. M., Bailey, K. M., Wojtkowiak, J. W., Ben-Nun, Y., Bogyo, M., Weber, E., Moin, K., Blum, G., Mattingly, R. R., Gillies, R. J., & Sloane, B. F. (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia, 15(10), 1125–1137.  https://doi.org/10.1593/neo.13946.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Curino, A. C., Engelholm, L. H., Yamada, S. S., Holmbeck, K., Lund, L. R., Molinolo, A. A., Behrendt, N., Nielsen, B. S., & Bugge, T. H. (2005). Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. The Journal of Cell Biology, 169(6), 977–985.  https://doi.org/10.1083/jcb.200411153.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefGoogle Scholar
  33. 33.
    Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., & Gillies, R. J. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 73(5), 1524–1535.  https://doi.org/10.1158/0008-5472.CAN-12-2796.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Edgington, L. E., Verdoes, M., & Bogyo, M. (2011). Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Current Opinion in Chemical Biology, 15(6), 798–805.  https://doi.org/10.1016/j.cbpa.2011.10.012.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Blum, G., Mullins, S. R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M. J., et al. (2005). Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chemical Biology, 1(4), 203–209.  https://doi.org/10.1038/nchembio728.CrossRefPubMedGoogle Scholar
  36. 36.
    Withana, N. P., Blum, G., Sameni, M., Slaney, C., Anbalagan, A., Olive, M. B., Bidwell, B. N., Edgington, L., Wang, L., Moin, K., Sloane, B. F., Anderson, R. L., Bogyo, M. S., & Parker, B. S. (2012). Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Research, 72(5), 1199–1209.  https://doi.org/10.1158/0008-5472.CAN-11-2759.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Duivenvoorden, H. M., Rautela, J., Edgington-Mitchell, L. E., Spurling, A., Greening, D. W., Nowell, C. J., Molloy, T. J., Robbins, E., Brockwell, N. K., Lee, C. S., Chen, M., Holliday, A., Selinger, C. I., Hu, M., Britt, K. L., Stroud, D. A., Bogyo, M., Möller, A., Polyak, K., Sloane, B. F., O'Toole, S. A., & Parker, B. S. (2017). Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion. The Journal of Pathology, 243(4), 496–509.  https://doi.org/10.1002/path.4990.CrossRefPubMedGoogle Scholar
  38. 38.
    Kasperkiewicz, P., Altman, Y., D'Angelo, M., Salvesen, G. S., & Drag, M. (2017). Toolbox of fluorescent probes for parallel imaging reveals uneven location of serine proteases in neutrophils. Journal of the American Chemical Society, 139(29), 10115–10125.  https://doi.org/10.1021/jacs.7b04394.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Heuser, J. (1989). Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. The Journal of Cell Biology, 108(3), 855–864.  https://doi.org/10.1083/jcb.108.3.855.CrossRefPubMedGoogle Scholar
  40. 40.
    Rozhin, J., Sameni, M., Ziegler, G., & Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54(24), 6517–6525.PubMedGoogle Scholar
  41. 41.
    Moffat, J. G., Rudolph, J., & Bailey, D. (2014). Phenotypic screening in cancer drug discovery - past, present and future. Nature Reviews. Drug Discovery, 13(8), 588–602.  https://doi.org/10.1038/nrd4366.CrossRefPubMedGoogle Scholar
  42. 42.
    Yang, Z. Q., Albertson, D., & Ethier, S. P. (2004). Genomic organization of the 8p11-p12 amplicon in three breast cancer cell lines. Cancer Genetics and Cytogenetics, 155(1), 57–62.  https://doi.org/10.1016/j.cancergencyto.2004.03.013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PharmacologyWayne State UniversityDetroitUSA

Personalised recommendations