Advertisement

Cancer and Metastasis Reviews

, Volume 38, Issue 1–2, pp 259–295 | Cite as

Exosomes, metastases, and the miracle of cancer stem cell markers

  • Zhe WangEmail author
  • Margot ZöllerEmail author
NON-THEMATIC REVIEW

Abstract

Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.

Keywords

Cancer-initiating cell biomarkers Metastasis Exosome biogenesis and targeting Exosome message transfer Gastrointestinal cancer 

Notes

Abbreviations

A-ISC active ISC, AML acute myeloid leukemia, ASC adult stem cells, BMC bone marrow cells, CAF cancer-associated fibroblasts, ceRNA competing endogenous RNA, CIC cancer-initiating cells/cancer stem cells, CoCa colorectal cancer, DC dendritic cells, DS deep sequencing, EBV Epstein–Barr virus, EC endothelial cells, ECM extracellular matrix, EE early endosome, EMT epithelial–mesenchymal transition, ERM ezrin, radixin, moesin, ESC embryonic stem cells, ESCRT endosomal sorting complex required for transport, EV extracellular vesicles, Exo exosome, GAG glycosaminoglycan, GEM glycolipid-enriched membrane domains, GPCR G protein-coupled receptor, HCC hepatocellular carcinoma, hiPSC human-induced pluripotent SC, ICD intracellular domain, ILV intraluminal vesicle, ISC intestinal SC, kd knockdown, ko knockout, LDL low-density lipoprotein, LN laminin, lnc long nc, LNC lymph node cells, macrophage, MHC major histocompatibility complex, miRNA microRNA, MS mass spectrometry, MVB multivesicular body, nc noncoding, NK natural killer cells, NSCLC nonsmall cell lung carcinoma, PaCa pancreatic cancer, PSC pluripotent SC, R receptor, RA retinoic acid, RISC RNA-induced silencing complex, ROS reactive oxygen species, RTK receptor tyrosine kinase, Q-ISC quiescent ISC, SC stem cells, TEM tetraspanin- and glycolipid-enriched membrane microdomain, TEX tumor exosomes, TF transcription factor, TJ tight junction

Funding information

This work was supported by the National Natural Science Foundation of China (ZW, NSFC. 81702877) and the German Cancer Research Aid (MZ, 110836). The funding had no impact on the design of the study and on collection, analysis and interpretation of data, and on writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Deep sequencing

ENA database accession No: PRJEB25446

Supplementary material

10555_2019_9793_MOESM1_ESM.docx (97 kb)
ESM 1 (DOCX 97 kb)

References

  1. 1.
    Steck, P. A., North, S. M., & Nicolson, G. L. (1987). Purification and partial characterization of a tumour-metastasis-associated high-Mr glycoprotein from rat 13762NF mammary adenocarcinoma cells. The Biochemical Journal, 242(3), 779–787.Google Scholar
  2. 2.
    Raz, A., Pazerini, G., & Carmi, P. (1989). Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Research, 49(13), 3489–3493.Google Scholar
  3. 3.
    Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A., et al. (1989). Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry, 28(18), 7476–7486.Google Scholar
  4. 4.
    Stewart, R. L., & O'Connor, K. L. (2015). Clinical significance of the integrin α6β4 in human malignancies. Laboratory Investigation, 95(9), 976–986.  https://doi.org/10.1038/labinvest.2015.82.Google Scholar
  5. 5.
    Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.Google Scholar
  6. 6.
    Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.Google Scholar
  7. 7.
    Kaur, E., Gupta, S., & Dutt, S. (2014). Clinical implications of MTA proteins in human cancer. Cancer Metastasis Reviews, 33(4), 1017–1024.  https://doi.org/10.1007/s10555-014-9527-z.Google Scholar
  8. 8.
    Malisetty, V. L., Penugurti, V., Panta, P., Chitta, S. K., & Manavathi, B. (2017). MTA1 expression in human cancers—clinical and pharmacological significance. Biomedicine & Pharmacotherapy, 95, 956–964.  https://doi.org/10.1016/j.biopha.2017.09.025.Google Scholar
  9. 9.
    Karhemo, P. R., Hyvönen, M., & Laakkonen, P. (2012). Metastasis-associated cell surface oncoproteomics. Frontiers in Pharmacology, 3, 192.  https://doi.org/10.3389/fphar.2012.00192.Google Scholar
  10. 10.
    Zhang, Y. Y., Chen, B., & Ding, Y. Q. (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pacific Journal of Cancer Prevention, 13(6), 2437–2244.Google Scholar
  11. 11.
    Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 70, 291–297.Google Scholar
  12. 12.
    Dexter, T. M. (1979). Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematologica, 62(5–6), 299–305.Google Scholar
  13. 13.
    Leventhal, B. G., & Konior, G. S. (1976). Leukemia: a critical review. Seminars in Oncology, 3(3), 319–325.Google Scholar
  14. 14.
    Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18(5), 460–466.Google Scholar
  15. 15.
    Tirino, V., Desiderio, V., Paino, F., De Rosa, A., Papaccio, F., La Noce, M., et al. (2013). Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. The FASEB Journal, 27(1), 13–24.  https://doi.org/10.1096/fj.12-218222.Google Scholar
  16. 16.
    Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews. Cancer, 18(2), 128–134.  https://doi.org/10.1038/nrc.2017.118.Google Scholar
  17. 17.
    Woodward, W. A., & Sulman, E. P. (2008). Cancer stem cells: markers or biomarkers? Cancer Metastasis Reviews, 27(3), 459–470.  https://doi.org/10.1007/s10555-008-9130-2.Google Scholar
  18. 18.
    Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9(9), 2450–2457.  https://doi.org/10.1158/1535-7163.MCT-10-0530.Google Scholar
  19. 19.
    Murar, M., & Vaidya, A. (2015). Cancer stem cell markers: premises and prospects. Biomarkers in Medicine, 9(12), 1331–1342.  https://doi.org/10.2217/bmm.15.85.Google Scholar
  20. 20.
    Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.Google Scholar
  21. 21.
    Rashed, M. H., Bayraktar, E., Helal, G. K., Abd-Ellah, M. F., Amero, P., Chavez-Reyes, A., et al. (2017). Exosomes: from garbage bins to promising therapeutic targets. International Journal of Molecular Sciences, 18(3), E538.  https://doi.org/10.3390/ijms18030538.Google Scholar
  22. 22.
    Lobb, R. J., Lima, L. G., & Möller, A. (2017). Exosomes: key mediators of metastasis and pre-metastatic niche formation. Seminars in Cell & Developmental Biology, 67, 3–10.  https://doi.org/10.1016/j.semcdb.2017.01.004.Google Scholar
  23. 23.
    Steinbichler, T. B., Dudás, J., Riechelmann, H., & Skvortsova, I. I. (2017). The role of exosomes in cancer metastasis. Seminars in Cancer Biology, 44, 170–181.  https://doi.org/10.1016/j.semcancer.2017.02.006.Google Scholar
  24. 24.
    Wu, J., Qu, Z., Fei, Z. W., Wu, J. H., & Jiang, C. P. (2017). Role of stem cell-derived exosomes in cancer. Oncology Letters, 13(5), 2855–2866.  https://doi.org/10.3892/ol.2017.5824.Google Scholar
  25. 25.
    Sharma, A. (2018). Role of stem cell derived exosomes in tumor biology. International Journal of Cancer, 142(6), 1086–1092.  https://doi.org/10.1002/ijc.31089.Google Scholar
  26. 26.
    Sato, S., & Weaver, A. M. (2018). Extracellular vesicles: important collaborators in cancer progression. Essays in Biochemistry, 62(2), 149–163.  https://doi.org/10.1042/EBC20170080.Google Scholar
  27. 27.
    Abak, A., Abhari, A., & Rahimzadeh, S. (2018). Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ, 6, e4763.  https://doi.org/10.7717/peerj.4763.Google Scholar
  28. 28.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30.  https://doi.org/10.3322/caac.21332.Google Scholar
  29. 29.
    Engelhardt, E. G., Révész, D., Tamminga, H. J., Punt, C. J. A., Koopman, M., Onwuteaka-Philipsen, B. D., et al. (2018). Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal cancer: a systematic review. Clinical Colorectal Cancer, 17(1), e1–e12.  https://doi.org/10.1016/j.clcc.2017.06.007.Google Scholar
  30. 30.
    Brenner, H., Kloor, M., & Pox, C. P. (2014). Colorectal cancer. Lancet, 383, 1490–1502.Google Scholar
  31. 31.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA: a Cancer Journal for Clinicians, 58(2), 71–96.Google Scholar
  32. 32.
    Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W., Comber, H., et al. (2013). Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. European Journal of Cancer, 49(6), 1374–1403.  https://doi.org/10.1016/j.ejca.2012.12.027.
  33. 33.
    Ahrendt, S. A., & Pitt, H. A. (2002). Surgical management of pancreatic cancer. Oncology (Williston Park), 16(6), 725–734 discussion 734, 736–728, 740, 743.Google Scholar
  34. 34.
    Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921.  https://doi.org/10.1158/0008-5472.CAN-14-0155.Google Scholar
  35. 35.
    Del Chiaro, M., Segersvärd, R., Lohr, M., & Verbeke, C. (2014). Early detection and prevention of pancreatic cancer: is it really possible today? World Journal of Gastroenterology, 20, 12118–12131.Google Scholar
  36. 36.
    Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: the promise and the potential. Seminars in Oncology, 42(Suppl 1), S3–S17.Google Scholar
  37. 37.
    Weinstein, I. B. (1987). Growth factors, oncogenes, and multistage carcinogenesis. Journal of Cellular Biochemistry, 33(3), 213–224.Google Scholar
  38. 38.
    Hong, S. N. (2018). Genetic and epigenetic alterations of colorectal cancer. Intest Res, 16(3), 327–337.  https://doi.org/10.5217/ir.2018.16.3.327.Google Scholar
  39. 39.
    Aguirre, A. J., & Collisson, E. A. (2017). Advances in the genetics and biology of pancreatic cancer. Cancer Journal, 23(6), 315–320.  https://doi.org/10.1097/PPO.0000000000000286.Google Scholar
  40. 40.
    Shiozawa, Y., Nie, B., Pienta, K. J., Morgan, T. M., & Taichman, R. S. (2013). Cancer stem cells and their role in metastasis. Pharmacology & Therapeutics, 138(2), 285–293.  https://doi.org/10.1016/j.pharmthera.2013.01.014.Google Scholar
  41. 41.
    Li, S., & Li, Q. (2014). Cancer stem cells and tumor metastasis (review). International Journal of Oncology, 44(6), 1806–1812.  https://doi.org/10.3892/ijo.2014.2362.Google Scholar
  42. 42.
    Daley, G. Q. (2015). Stem cells and the evolving notion of cellular identity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1680), 20140376.  https://doi.org/10.1098/rstb.2014.0376.Google Scholar
  43. 43.
    Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem Cell Reviews, 2(1), 23–30.Google Scholar
  44. 44.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.Google Scholar
  45. 45.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.Google Scholar
  46. 46.
    Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.Google Scholar
  47. 47.
    Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371(6498), 606–609.Google Scholar
  48. 48.
    Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129(10), 2447–2457.Google Scholar
  49. 49.
    Rostovskaya, M., Bredenkamp, N., & Smith, A. (2015). Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1680), 20140365.  https://doi.org/10.1098/rstb.2014.0365.Google Scholar
  50. 50.
    Jiang, F. X., & Morahan, G. (2014). Pancreatic stem cells remain unresolved. Stem Cells and Development, 23(23), 2803–2812.  https://doi.org/10.1089/scd.2014.0214.Google Scholar
  51. 51.
    Larsen, H. L., & Grapin-Botton, A. (2017). The molecular and morphogenetic basis of pancreas organogenesis. Seminars in Cell & Developmental Biology, 66, 51–68.  https://doi.org/10.1016/j.semcdb.2017.01.005.Google Scholar
  52. 52.
    Sznurkowska, M. K., Hannezo, E., Azzarelli, R., Rulands, S., Nestorowa, S., Hindley, C. J., et al. (2018). Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell, 46(3), 360–375.e5.  https://doi.org/10.1016/j.devcel.2018.06.028.Google Scholar
  53. 53.
    Buczacki, S. J., Zecchini, H. I., Nicholson, A. M., Russell, R., Vermeulen, L., Kemp, R., et al. (2013). Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature, 495(7439), 65–69.  https://doi.org/10.1038/nature11965.Google Scholar
  54. 54.
    Zhang, Z., & Huang, J. (2013). Intestinal stem cells—types and markers. Cell Biology International, 37(5), 406–414.  https://doi.org/10.1002/cbin.10049.Google Scholar
  55. 55.
    Clevers, H. C., & Bevins, C. L. (2013). Paneth cells: maestros of the small intestinal crypts. Annual Review of Physiology, 75, 289–311.  https://doi.org/10.1146/annurev-physiol-030212-183744.Google Scholar
  56. 56.
    Kriz, V., & Korinek, V. (2018). Wnt, RSPO and Hippo signalling in the intestine and intestinal stem cells. Genes (Basel), 9(1), E20.  https://doi.org/10.3390/genes9010020.Google Scholar
  57. 57.
    Krausova, M., & Korinek, V. (2014). Wnt signaling in adult intestinal stem cells and cancer. Cellular Signalling, 26(3), 570–579.  https://doi.org/10.1016/j.cellsig.2013.11.032.Google Scholar
  58. 58.
    Clevers, H., Loh, K. M., & Nusse, R. (2014). Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 346(6205), 1248012.  https://doi.org/10.1126/science.1248012.Google Scholar
  59. 59.
    Park, S., Cui, J., Yu, W., Wu, L., Carmon, K. S., & Liu, Q. J. (2018). Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. The Journal of Biological Chemistry, 293(25), 9759–9769.  https://doi.org/10.1074/jbc.RA118.002743.Google Scholar
  60. 60.
    Yan, K. S., Janda, C. Y., Chang, J., Zheng, G. X. Y., Larkin, K. A., Luca, V. C., et al. (2017). Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature, 545(7653), 238–242.  https://doi.org/10.1038/nature22313.Google Scholar
  61. 61.
    Passegué, E., & Weisman, I. L. (2005). Leukemic stem cells: where do they come from? Stem Cell Reviews, 1(3), 181–188.Google Scholar
  62. 62.
    Johnsen, H. E., Kjeldsen, M. K., Urup, T., Fogd, K., Pilgaard, L., Boegsted, M., et al. (2009). Cancer stem cells and the cellular hierarchy in haematological malignancies. European Journal of Cancer, 45(Suppl 1), 194–201.  https://doi.org/10.1016/S0959-8049(09)70033-4.Google Scholar
  63. 63.
    Shah, M., & Allegrucci, C. (2013). Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells. Sub-Cellular Biochemistry, 61, 545–565.  https://doi.org/10.1007/978-94-007-4525-4_24.Google Scholar
  64. 64.
    Verga Falzacappa, M. V., Ronchini, C., Reavie, L. B., & Pelicci, P. G. (2012). Regulation of self-renewal in normal and cancer stem cells. The FEBS Journal, 279(19), 3559–3572.  https://doi.org/10.1111/j.1742-4658.2012.08727.x.Google Scholar
  65. 65.
    Liu, J. (2018). The dualistic origin of human tumors. Seminars in Cancer Biology, 2018.  https://doi.org/10.1016/j.semcancer.2018.07.004.
  66. 66.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.Google Scholar
  67. 67.
    Mantamadiotis, T., & Taraviras, S. (2011). Self-renewal mechanisms in neural cancer stem cells. Front Biosci (Landmark Ed), 16, 598–607.Google Scholar
  68. 68.
    Hinge, A., & Filippi, M. D. (2016). Deconstructing the complexity of TGFβ signaling in hematopoietic stem cells: quiescence and beyond. Curr Stem Cell Rep, 2(4), 388–397.  https://doi.org/10.1007/s40778-016-0069-x.Google Scholar
  69. 69.
    Soteriou, D., & Fuchs, Y. (2018). A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nature Reviews. Cancer, 18(3), 187–201.  https://doi.org/10.1038/nrc.2017.122.Google Scholar
  70. 70.
    Alison, M. R., Guppy, N. J., Lim, S. M., & Nicholson, L. J. (2010). Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology, 222(4), 335–344.  https://doi.org/10.1002/path.2772.Google Scholar
  71. 71.
    Easwaran, H., Tsai, H. C., & Baylin, S. B. (2014). Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Molecular Cell, 54(5), 716–727.  https://doi.org/10.1016/j.molcel.2014.05.015.Google Scholar
  72. 72.
    Colak, S., & Medema, J. P. (2014). Cancer stem cells—important players in tumor therapy resistance. The FEBS Journal, 281(21), 4779–4791.  https://doi.org/10.1111/febs.13023.Google Scholar
  73. 73.
    Skvortsova, I., Debbage, P., Kumar, V., & Skvortsov, S. (2015). Radiation resistance: cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Seminars in Cancer Biology, 35, 39–44.  https://doi.org/10.1016/j.semcancer.2015.09.009.Google Scholar
  74. 74.
    Lipinska, N., Romaniuk, A., Paszel-Jaworska, A., Toton, E., Kopczynski, P., & Rubis, B. (2017). Telomerase and drug resistance in cancer. Cellular and Molecular Life Sciences, 74(22), 4121–4132.  https://doi.org/10.1007/s00018-017-2573-2.Google Scholar
  75. 75.
    Yan, Y., Zuo, X., & Wie, D. (2015). Concise review: Emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Translational Medicine, 4(9), 1033–1043.  https://doi.org/10.5966/sctm.2015-0048.Google Scholar
  76. 76.
    de Lucas, B., Pérez, L. M., & Gálvez, B. G. (2018). Importance and regulation of adult stem cell migration. Journal of Cellular and Molecular Medicine, 22(2), 746–754.  https://doi.org/10.1111/jcmm.13422.Google Scholar
  77. 77.
    Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nature Reviews. Cancer.  https://doi.org/10.1038/s41568-018-0038-z.
  78. 78.
    Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.Google Scholar
  79. 79.
    Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Research, 17, 17.  https://doi.org/10.1186/s13058-015-0523-1.Google Scholar
  80. 80.
    Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.Google Scholar
  81. 81.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.Google Scholar
  82. 82.
    Moghbeli, M., Moghbeli, F., Forghanifard, M. M., & Abbaszadegan, M. R. (2014). Cancer stem cell detection and isolation. Medical Oncology, 31(9), 69.  https://doi.org/10.1007/s12032-014-0069-6.Google Scholar
  83. 83.
    Telford, W. G. (2013). Stem cell identification by DyeCycle Violet side population analysis. Methods in Molecular Biology, 946, 163–179.  https://doi.org/10.1007/978-1-62703-128-8_11.Google Scholar
  84. 84.
    Ishiguro, T., Ohata, H., Sato, A., Yamawaki, K., Enomoto, T., & Okamoto, K. (2017). Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Science, 108(3), 283–289.  https://doi.org/10.1111/cas.13155.Google Scholar
  85. 85.
    Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews, 7(2), 292–306.  https://doi.org/10.1007/s12015-010-9208-4.Google Scholar
  86. 86.
    Duan, J. J., Cai, J., Guo, Y. F., Bian, X. W., & Yu, S. C. (2016). ALDH1A3, a metabolic target for cancer diagnosis and therapy. International Journal of Cancer, 139(5), 965–975.  https://doi.org/10.1002/ijc.30091.Google Scholar
  87. 87.
    Mele, L., Liccardo, D., & Tirino, V. (2018). Evaluation and isolation of cancer stem cells using ALDH activity assay. Methods in Molecular Biology, 1692, 43–48.  https://doi.org/10.1007/978-1-4939-7401-6_4.Google Scholar
  88. 88.
    Gopalan, V., Islam, F., & Lam, A. K. (2018). Surface markers for the identification of cancer stem cells. Methods in Molecular Biology, 1692, 17–29.  https://doi.org/10.1007/978-1-4939-7401-6_2.Google Scholar
  89. 89.
    Pelosi, E., Castelli, G., & Testa, U. (2015). Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells, Molecules & Diseases, 55(4), 336–346.  https://doi.org/10.1016/j.bcmd.2015.07.015.Google Scholar
  90. 90.
    Bao, B., Ahmad, A., Azmi, A.S., Ali, S., & Sarkar, F.H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol, Chapter 14:Unit 14.25. doi: 10.1002/0471141755.ph1425s61.Google Scholar
  91. 91.
    Guzman, M. L., & Allan, J. N. (2014). Concise review: Leukemia stem cells in personalized medicine. Stem Cells, 32(4), 844–851.  https://doi.org/10.1002/stem.1597.Google Scholar
  92. 92.
    Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69(14), 5627–5629.  https://doi.org/10.1158/0008-5472.CAN-09-0654.Google Scholar
  93. 93.
    Todaro, M., Gaggianesi, M., Catalano, V., Benfante, A., Iovino, F., Biffoni, M., et al. (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell, 14(3), 342–356.  https://doi.org/10.1016/j.stem.2014.01.009.Google Scholar
  94. 94.
    Smith, N. R., Davies, P. S., Levin, T. G., Gallagher, A. C., Keene, D. R., Sengupta, S. K., et al. (2017). Cell adhesion molecule CD166/ALCAM functions within the crypt to orchestrate murine intestinal stem cell homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 3(3), 389–409.  https://doi.org/10.1016/j.jcmgh.2016.12.010.Google Scholar
  95. 95.
    Jung, P., Sato, T., Merlos-Suárez, A., Barriga, F. M., Iglesias, M., Rossell, D., et al. (2011). Isolation and in vitro expansion of human colonic stem cells. Nature Medicine, 17(10), 1225–1227.  https://doi.org/10.1038/nm.2470.Google Scholar
  96. 96.
    Li, C., Wu, J. J., Hynes, M., Dosch, J., Sarkar, B., Welling, T. H., et al. (2011). c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology, 141(6), 2218–2227.e5.  https://doi.org/10.1053/j.gastro.2011.08.009.Google Scholar
  97. 97.
    Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.  https://doi.org/10.1016/j.stem.2007.06.002.Google Scholar
  98. 98.
    Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.Google Scholar
  99. 99.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.Google Scholar
  100. 100.
    Ren, F., Sheng, W. Q., & Du, X. (2013). CD133: a cancer stem cells marker, is used in colorectal cancers. World Journal of Gastroenterology, 19(17), 2603–2611.  https://doi.org/10.3748/wjg.v19.i17.2603.Google Scholar
  101. 101.
    Mak, A. B., Nixon, A. M., Kittanakom, S., Stewart, J. M., Chen, G. I., Curak, J., et al. (2012). Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Reports, 2(4), 951–963.  https://doi.org/10.1016/j.celrep.2012.09.016.Google Scholar
  102. 102.
    Shimozato, O., Waraya, M., Nakashima, K., Souda, H., Takiguchi, N., Yamamoto, H., et al. (2015). Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene, 34(15), 1949–1960.  https://doi.org/10.1038/onc.2014.141.Google Scholar
  103. 103.
    Röper, K., Corbeil, D., & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2(9), 582–592.Google Scholar
  104. 104.
    Giebel, B., Corbeil, D., Beckmann, J., Höhn, J., Freund, D., Giesen, K., et al. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 104(8), 2332–2338.Google Scholar
  105. 105.
    Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1(1), 31–39.Google Scholar
  106. 106.
    Fonseca, A. V., Bauer, N., & Corbeil, D. (2008). The stem cell marker CD133 meets the endosomal compartment—new insights into the cell division of hematopoietic stem cells. Blood Cells, Molecules & Diseases, 41(2), 194–195.  https://doi.org/10.1016/j.bcmd.2008.04.004.Google Scholar
  107. 107.
    Kemper, K., Prasetyanti, P. R., De Lau, W., Rodermond, H., Clevers, H., & Medema, J. P. (2012). Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells, 30(11), 2378–2386.  https://doi.org/10.1002/stem.1233.Google Scholar
  108. 108.
    de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476(7360), 293–297.  https://doi.org/10.1038/nature10337.Google Scholar
  109. 109.
    Koo, B. K., & Clevers, H. (2014). Stem cells marked by the R-spondin receptor LGR5. Gastroenterology, 147(2), 289–302.  https://doi.org/10.1053/j.gastro.2014.05.007.Google Scholar
  110. 110.
    de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., et al. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680.  https://doi.org/10.1038/nature21713.Google Scholar
  111. 111.
    Leung, C., Tan, S. H., & Barker, N. (2018). Recent advances in Lgr5+ stem cell research. Trends in Cell Biology, 28(5), 380–391.  https://doi.org/10.1016/j.tcb.2018.01.010.Google Scholar
  112. 112.
    Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., & John, T. (1989). Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America, 86, 4659–4663.Google Scholar
  113. 113.
    Goldstein, L. A., & Butcher, E. C. (1990). Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics, 32, 389–397.Google Scholar
  114. 114.
    Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.Google Scholar
  115. 115.
    Ishii, S., Ford, R., Thomas, P., Nachman, A., Steele, G., Jr., & Jessup, J. M. (1993). CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical Oncology, 2, 255–264.Google Scholar
  116. 116.
    Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., et al. (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. The Journal of Cell Biology, 128, 687–698.Google Scholar
  117. 117.
    Neame, S. J., & Isacke, C. M. (1993). The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. The Journal of Cell Biology, 121, 1299–1310.Google Scholar
  118. 118.
    Liu, D., & Sy, M. S. (1997). Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology, 159, 2702–2711.Google Scholar
  119. 119.
    Föger, N., Marhaba, R., & Zöller, M. (1999). Raft associated interaction of CD44 with the cytoskeleton. Journal of Cell Science, 114, 1169–1178.Google Scholar
  120. 120.
    Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwärzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146, 843–854.Google Scholar
  121. 121.
    Lokeshwar, V. B., Fregien, N., & Bourguignon, L. Y. (1994). Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. The Journal of Cell Biology, 126, 1099–1109.Google Scholar
  122. 122.
    Ruiz, P., Schwärzler, C., & Günthert, U. (1995). CD44 isoforms during differentiation and development. Bioessays, 17, 17–24.Google Scholar
  123. 123.
    Jalkanen, S., & Jalkanen, M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of Cell Biology, 116, 817–825.Google Scholar
  124. 124.
    Toyama-Sorimachi, N., & Miyasaka, M. (1994). A novel ligand for CD44 is sulfated proteoglycan. International Immunology, 6, 655–660.Google Scholar
  125. 125.
    Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.Google Scholar
  126. 126.
    Greenfield, B., Wang, W. C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., et al. (1999). Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. The Journal of Biological Chemistry, 274, 2511–2517.Google Scholar
  127. 127.
    Higman, V. A., Briggs, D. C., Mahoney, D. J., Blundell, C. D., Sattelle, B. M., Dyer, D. P., et al. (2014). A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. The Journal of Biological Chemistry, 289, 5619–5634.  https://doi.org/10.1074/jbc.M113.542357.Google Scholar
  128. 128.
    Orian-Rousseau, V., & Ponta, H. (2008). Adhesion proteins meet receptors: a common theme? Advances in Cancer Research, 101, 63–92.Google Scholar
  129. 129.
    Tremmel, M., Matzke, A., Albrecht, I., Laib, A. M., Olaku, V., Ballmer-Hofer, K., et al. (2009). A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood, 114, 5236–5244.  https://doi.org/10.1182/blood-2009-04-219204.Google Scholar
  130. 130.
    Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., et al. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Research, 65, 686–691.Google Scholar
  131. 131.
    Orian-Rousseau, V. (2015). CD44 acts as a signaling platform controlling tumor progression and metastasis. Frontiers in Immunology, 6, 154.  https://doi.org/10.3389/fimmu.2015.00154.Google Scholar
  132. 132.
    Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y., & Hakoshima, T. (2008). Structural basis for CD44 recognition by ERM proteins. The Journal of Biological Chemistry, 283, 29602–29612.Google Scholar
  133. 133.
    Fehon, R. G., McClatchey, A. I., & Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature Reviews. Molecular Cell Biology, 11, 276–287.Google Scholar
  134. 134.
    Stamenkovic, I., & Yu, Q. (2010). Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell. Motility, proliferation, and survival. Current Protein & Peptide Science, 11, 471–484.Google Scholar
  135. 135.
    Orian-Rousseau, V., Morrison, H., Matzke, A., Kastilan, T., Pace, G., Herrlich, P., et al. (2007). Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Molecular Biology of the Cell, 18, 76–83.  https://doi.org/10.1091/mbc.E06-08-0674.Google Scholar
  136. 136.
    Adamia, S., Maxwell, C. A., & Pilarski, L. M. (2005). Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets. Cardiovascular & Haematological Disorders, 5, 3–14.Google Scholar
  137. 137.
    Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281, 34936–34941.Google Scholar
  138. 138.
    Kozovska, Z., Gabrisova, V., & Kucerova, L. (2014). Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomedicine & Pharmacotherapy, 68, 911–916.  https://doi.org/10.1016/j.biopha.2014.10.019.Google Scholar
  139. 139.
    Grass, G. D., Dai, L., Qin, Z., Parsons, C., & Toole, B. P. (2014). CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Advances in Cancer Research, 123, 351–373.  https://doi.org/10.1016/B978-0-12-800092-2.00013-7.Google Scholar
  140. 140.
    Bourguignon, L. Y. (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 18, 251–259.Google Scholar
  141. 141.
    Ghatak, S., Misra, S., & Toole, B. P. (2005). Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. The Journal of Biological Chemistry, 280, 8875–8883.  https://doi.org/10.1074/jbc.M410882200.Google Scholar
  142. 142.
    Heldin, P., Basu, K., Kozlova, I., & Porsch, H. (2014). HAS2 and CD44 in breast tumorigenesis. Advances in Cancer Research, 123, 211–229.  https://doi.org/10.1016/B978-0-12-800092-2.00008-3.Google Scholar
  143. 143.
    Xu, H., Tian, Y., Yuan, X., Wu, H., Liu, Q., Pestell, R. G., et al. (2015). The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther, 8, 3783–3792.  https://doi.org/10.2147/OTT.S95470.Google Scholar
  144. 144.
    Nastase, M. V., Janicova, A., Wygrecka, M., & Schaefer, L. (2017). Signaling at the crossroads: matrix-derived proteoglycan and reactive oxygen species signaling. Antioxidants & Redox Signaling, 27(12), 855–873.  https://doi.org/10.1089/ars.2017.7165.Google Scholar
  145. 145.
    Ekyalongo, R. C., Nakayama, H., Kina, K., Kaga, N., & Iwabuchi, K. (2015). Organization and functions of glycolipid-enriched microdomains in phagocytes. Biochimica et Biophysica Acta, 1851, 90–97.  https://doi.org/10.1016/j.bbalip.2014.06.009.Google Scholar
  146. 146.
    Korcsmaros, T., & Schneider, M. V. (2017). Superti-Furga G. Next generation of network medicine: interdisciplinary signaling approaches. Integr Biol (Camb), 9, 97–108.  https://doi.org/10.1039/c6ib00215c.Google Scholar
  147. 147.
    Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28, 106–112.Google Scholar
  148. 148.
    Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature Reviews. Molecular Cell Biology, 6, 801–811.Google Scholar
  149. 149.
    Levy, S., & Shoham, T. (2005). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 20, 218–224.Google Scholar
  150. 150.
    Halova, I., & Draber, P. (2016). Tetraspanins and transmembrane adaptor proteins as plasma membrane organizers—mast cell case. Frontiers in Cell and Development Biology, 4, 43.  https://doi.org/10.3389/fcell.2016.00043.Google Scholar
  151. 151.
    Berditchevski, F., & Odintsova, E. (2007). Tetraspanins as regulators of protein trafficking. Traffic, 8, 89–96.Google Scholar
  152. 152.
    Yáñez-Mó, M., Gutiérrez-López, M. D., & Cabañas, C. (2011). Functional interplay between tetraspanins and proteases. Cellular and Molecular Life Sciences, 68, 3323–3335.  https://doi.org/10.1007/s00018-011-0746-y.Google Scholar
  153. 153.
    Stepanek, O., Draber, P., & Horejsi, V. (2014). Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cellular Signalling, 26, 895–902.  https://doi.org/10.1016/j.cellsig.2014.01.007.Google Scholar
  154. 154.
    Termini, C. M., & Gillette, J. M. (2017). Tetraspanins function as regulators of cellular signaling. Frontiers in Cell and Development Biology, 5, 34.  https://doi.org/10.3389/fcell.2017.00034.Google Scholar
  155. 155.
    Schmidt, T. H., Homsi, Y., & Lang, T. (2016). Oligomerization of the tetraspanin CD81 via the flexibility of its δ-loop. Biophysical Journal, 110, 2463–2474.  https://doi.org/10.1016/j.bpj.2016.05.003.Google Scholar
  156. 156.
    Yue, S., Zhao, K., Erb, U., Rana, S., & Zöller, M. (2017). Joint features and complementarities of Tspan8 and CD151 revealed in knockdown and knockout models. Biochemical Society Transactions, 45, 437–447.  https://doi.org/10.1042/BST20160298.Google Scholar
  157. 157.
    Park, C. S., Kim, T. K., Kim, H. G., Kim, Y. J., Jeoung, M. H., Lee, W. R., et al. (2016). Therapeutic targeting of tetraspanin8 in epithelial ovarian cancer invasion and metastasis. Oncogene, 35, 4540–4548.  https://doi.org/10.1038/onc.2015.520.Google Scholar
  158. 158.
    Fang, T., Lin, J., Wang, Y., Chen, G., Huang, J., Chen, J., et al. (2016). Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget, 7, 40630–40643. doi: 10.18632/oncotarget.9769.Google Scholar
  159. 159.
    Wie, L., Li, Y., & Suo, Z. (2015). TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8599–8607.Google Scholar
  160. 160.
    El Kharbili, M., Robert, C., Witkowski, T., Danty-Berger, E., Barbollat-Boutrand, L., Masse, I., et al. (2017). Tetraspanin 8 is a novel regulator of ILK-driven β1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget, 8(10), 17140–17155.  https://doi.org/10.18632/oncotarget.15084.Google Scholar
  161. 161.
    Pan, S. J., Wu, Y. B., Cai, S., Pan, Y. X., Liu, W., Bian, L. G., et al. (2015). Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochemical and Biophysical Research Communications, 458, 476–482.  https://doi.org/10.1016/j.bbrc.2015.01.128.Google Scholar
  162. 162.
    Wang, H., Rana, S., Giese, N., Büchler, M. W., & Zöller, M. (2013). Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. International Journal of Cancer, 133(2), 416–426.  https://doi.org/10.1002/ijc.28044.Google Scholar
  163. 163.
    Madhavan, B., Yue, S., Galli, U., Rana, S., Groß, W., Müller, M., et al. (2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer, 136(11), 2616–2627.  https://doi.org/10.1002/ijc.29324.Google Scholar
  164. 164.
    Greco, C., Bralet, M. P., Ailane, N., Dubart-Kupperschmitt, A., Rubinstein, E., Le Naour, F., et al. (2010). E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Research, 70(19), 7674–7683.  https://doi.org/10.1158/0008-5472.CAN-09-4482.Google Scholar
  165. 165.
    Ailane, N., Greco, C., Zhu, Y., Sala-Valdés, M., Billard, M., Casal, I., et al. (2014). Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Frontiers in Physiology, 5, 364.  https://doi.org/10.3389/fphys.2014.00364.Google Scholar
  166. 166.
    Pan, S. J., Zhan, S. K., Pan, Y. X., Liu, W., Bian, L. G., Sun, B., et al. (2015). Tetraspanin 8-rictor-integrin α3 complex is required for glioma cell migration. International Journal of Molecular Sciences, 16, 5363–5374.  https://doi.org/10.3390/ijms16035363.Google Scholar
  167. 167.
    Wang, Z., von Au, A., Schnölzer, M., Hackert, T., & Zöller, M. (2016). CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells. Oncotarget, 7(34), 55409–55436.  https://doi.org/10.18632/oncotarget.10580.Google Scholar
  168. 168.
    Yue, S., Mu, W., & Zöller, M. (2013). Tspan8 and CD151 promote metastasis by distinct mechanisms. European Journal of Cancer, 49(13), 2934–2948.  https://doi.org/10.1016/j.ejca.2013.03.032.Google Scholar
  169. 169.
    Schmidt, F., Müller, M., Prox, J., Arnold, P., Schönherr, C., Tredup, C., et al. (2016). Tetraspanin 8 is an interactor of the metalloprotease meprin β within tetraspanin-enriched microdomains. Biological Chemistry, 397(9), 857–869.  https://doi.org/10.1515/hsz-2016-0126.Google Scholar
  170. 170.
    Zhu, Y., Ailane, N., Sala-Valdés, M., Haghighi-Rad, F., Billard, M., Nguyen, V., et al. (2017). Multi-factorial modulation of colorectal carcinoma cells motility—partial coordination by the tetraspanin Co-029/tspan8. Oncotarget, 8(16), 27454–27470.  https://doi.org/10.18632/oncotarget.16247.Google Scholar
  171. 171.
    Gesierich, S., Berezovskiy, I., Ryschich, E., & Zöller, M. (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research, 66, 7083–7094.Google Scholar
  172. 172.
    Nazarenko, I., Rana, S., Baumann, A., McAlear, J., Hellwig, A., Trendelenburg, M., et al. (2010). Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Research, 70(4), 1668–1678.  https://doi.org/10.1158/0008-5472.CAN-09-2470.Google Scholar
  173. 173.
    Rana, S., Claas, C., Kretz, C. C., Nazarenko, I., & Zöller, M. (2011). Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: impact on tumor cell motility. The International Journal of Biochemistry & Cell Biology, 43(1), 106–119.  https://doi.org/10.1016/j.biocel.2010.10.002.Google Scholar
  174. 174.
    Litvinov, S. V., Velders, M. P., Bakker, H. A., Fleuren, G. J., & Warnaar, S. O. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. The Journal of Cell Biology, 125(2), 437–446.Google Scholar
  175. 175.
    Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38(1), 68–75.  https://doi.org/10.1016/j.ctrv.2011.04.002.Google Scholar
  176. 176.
    Imrich, S., Hachmeister, M., & Gires, O. (2012). EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration, 6, 30–38.Google Scholar
  177. 177.
    Maghzal, N., Vogt, E., Reintsch, W., Fraser, J. S., & Fagotto, F. (2010). The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. The Journal of Cell Biology, 191, 645–659.Google Scholar
  178. 178.
    Maetzel, D., Denzel, S., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.Google Scholar
  179. 179.
    Lin, C. W., Liao, M. Y., Lin, W. W., Wang, Y. P., Lu, T. Y., & Wu, H. C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition genes expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.Google Scholar
  180. 180.
    Wang, H., Stoecklein, N. H., Lin, P. P., & Gires, O. (2017). Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget, 8(1), 1884–1912.  https://doi.org/10.18632/oncotarget.12242.Google Scholar
  181. 181.
    Herreros-Pomares, A., Aguilar-Gallardo, C., Calabuig-Fariñas, S., Sirera, R., Jantus-Lewintre, E., & Camps, C. (2018). EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Critical Reviews in Oncology/Hematology, 126, 52–63.  https://doi.org/10.1016/j.critrevonc.2018.03.006.Google Scholar
  182. 182.
    Biddle, A., Liang, X., Gammon, L., Fazil, B., Harper, L. J., Emich, H., et al. (2011). Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Research, 71(15), 5317–5326.  https://doi.org/10.1158/0008-5472.CAN-11-1059.Google Scholar
  183. 183.
    Gires, O., Klein, C. A., & Baeuerle, P. A. (2009). On the abundance of EpCAM on cancer stem cells. Nature Reviews. Cancer, 9(2), 143; author reply 143.  https://doi.org/10.1038/nrc2499-c1.Google Scholar
  184. 184.
    González, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27(8), 1782–1791.  https://doi.org/10.1002/stem.97.Google Scholar
  185. 185.
    Lu, T. Y., Lu, R. M., Liao, M. Y., Yu, J., Chung, C. H., Kao, C. F., et al. (2010). Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. The Journal of Biological Chemistry, 285(12), 8719–8732.  https://doi.org/10.1074/jbc.M109.077081.Google Scholar
  186. 186.
    Tamura, A., & Tsukita, S. (2014). Paracellular barrier and channel functions of TJ claudins in organizing biological systems: advances in the field of barriology revealed in knockout mice. Seminars in Cell & Developmental Biology, 36, 177–185.  https://doi.org/10.1016/j.semcdb.2014.09.019.Google Scholar
  187. 187.
    Van Itallie, C. M., & Anderson, J. M. (2014). Architecture of tight junctions and principles of molecular composition. Seminars in Cell & Developmental Biology, 36, 157–165.  https://doi.org/10.1016/j.semcdb.2014.08.011.Google Scholar
  188. 188.
    Ding, L., Lu, Z., Foreman, O., Tatum, R., Lu, Q., Renegar, R., et al. (2012). Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology, 142, 305–315.  https://doi.org/10.1053/j.gastro.2011.Google Scholar
  189. 189.
    Tanaka, H., Takechi, M., Kiyonari, H., Shioi, G., Tamura, A., & Tsukita, S. (2015). Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut, 64, 1529–1538.  https://doi.org/10.1136/gutjnl-2014-308419.Google Scholar
  190. 190.
    Lal-Nag, M., & Morin, P. J. (2009). The claudins. Genome Biology, 10, 235.Google Scholar
  191. 191.
    Van Itallie, C. M., & Anderson, J. M. (2013). Claudin interactions in and out of the tight junction. Tissue Barriers, 1, e25247.Google Scholar
  192. 192.
    Sjö, A., Magnusson, K. E., & Peterson, K. H. (2010). Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. The Journal of Membrane Biology, 236, 181–189.Google Scholar
  193. 193.
    Su, L., Nalle, S. C., Shen, L., Turner, E. S., Singh, G., Breskin, L. A., et al. (2013). TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 145(2), 407–415.  https://doi.org/10.1053/j.gastro.2013.04.011.Google Scholar
  194. 194.
    Shen, L. (2012). Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 1258, 9–12518.Google Scholar
  195. 195.
    Stamatovic, S. M., Keep, R. F., & Andjelkovic, A. V. (2011). Tracing the endocytosis of claudin-5 in brain endothelial cells. Methods in Molecular Biology, 762, 303–320.  https://doi.org/10.1007/978-1-61779-185-7_22.Google Scholar
  196. 196.
    Heiler, S., Mu, W., Zöller, M., & Thuma, F. (2015). The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Communication and Signaling: CCS, 13, 29.Google Scholar
  197. 197.
    Thuma, F., Heiler, S., Schnölzer, M., & Zöller, M. (2016). Palmitoylated claudin7 captured in glycolipid-enriched membrane microdomains promotes metastasis via associated transmembrane and cytosolic molecules. Oncotarget, 7, 30659–30677.  https://doi.org/10.18632/oncotarget.8928.Google Scholar
  198. 198.
    Rao, Y., Rückert, C., Saenger, W., & Haucke, V. (2012). The early steps of endocytosis: from cargo selection to membrane deformation. European Journal of Cell Biology, 91, 226–233.  https://doi.org/10.1016/j.ejcb.2011.02.004.Google Scholar
  199. 199.
    Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.Google Scholar
  200. 200.
    Deshmukh, A., Binju, M., Arfuso, F., Newsholme, P., & Dharmarajan, A. (2017). Role of epigenetic modulation in cancer stem cell fate. The International Journal of Biochemistry & Cell Biology, 90, 9–16.  https://doi.org/10.1016/j.biocel.2017.07.003.Google Scholar
  201. 201.
    Godoy, P., Schmidt-Heck, W., Hellwig, B., Nell, P., Feuerborn, D., Rahnenführer, J., et al. (2018). Assessment of stem cell differentiation based on genome-wide expression profiles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1750), 20170221.  https://doi.org/10.1098/rstb.2017.0221.Google Scholar
  202. 202.
    Niwa, H. (2018). The principles that govern transcription factor network functions in stem cells. Development, 145(6), 157420.  https://doi.org/10.1242/dev.157420.Google Scholar
  203. 203.
    Herreros-Villanueva, M., Bujanda, L., Billadeau, D. D., & Zhang, J. S. (2014). Embryonic stem cell factors and pancreatic cancer. World Journal of Gastroenterology, 20(9), 2247–2254.  https://doi.org/10.3748/wjg.v20.i9.2247.Google Scholar
  204. 204.
    Herreros-Villanueva, M., Zhang, J. S., Koenig, A., Abel, E. V., Smyrk, T. C., Bamlet, W. R., et al. (2013). SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis, 2, e61.  https://doi.org/10.1038/oncsis.2013.23.Google Scholar
  205. 205.
    Rhim, A. D., Mirek, E. T., Aiello, N. M., Maitra, A., Bailey, J. M., McAllister, F., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361.  https://doi.org/10.1016/j.cell.2011.11.025.Google Scholar
  206. 206.
    Wang, S., Huang, S., & Sun, Y. L. (2017). Epithelial-mesenchymal transition in pancreatic cancer: a review. BioMed Research International, 2017, 2646148.  https://doi.org/10.1155/2017/2646148.Google Scholar
  207. 207.
    Roe, J. S., Hwang, C. I., Somerville, T. D. D., Milazzo, J. P., Lee, E. J., Da Silva, B., et al. (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170(5), 875–888.e20.  https://doi.org/10.1016/j.cell.2017.07.007.Google Scholar
  208. 208.
    Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291.  https://doi.org/10.1016/j.stem.2014.02.006.Google Scholar
  209. 209.
    Katoh, M. (2017). Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). International Journal of Oncology, 51(5), 1357–1369.  https://doi.org/10.3892/ijo.2017.4129.Google Scholar
  210. 210.
    Fearon, E. R., & Wicha, M. S. (2014). KRAS and cancer stem cells in APC-mutant colorectal cancer. Journal of the National Cancer Institute, 106(2), djt444.  https://doi.org/10.1093/jnci/djt444.Google Scholar
  211. 211.
    Zhang, F., Sun, H., Zhang, S., Yang, X., Zhang, G., & Su, T. (2017). Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and β-catenin signaling. Oncology Research, 25(5), 709–719.  https://doi.org/10.3727/096504016X14772331883976.Google Scholar
  212. 212.
    Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., et al. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34(11), 6339–6344.Google Scholar
  213. 213.
    Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., et al. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nature Cell Biology, 16(7), 695–707.  https://doi.org/10.1038/ncb2992.Google Scholar
  214. 214.
    Chen, J., Shao, R., Li, F., Monteiro, M., Liu, J. P., Xu, Z. P., et al. (2015). PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clinical and Experimental Pharmacology & Physiology, 42(12), 1317–1326.  https://doi.org/10.1111/1440-1681.12493.Google Scholar
  215. 215.
    Pelicci, P. G., Dalton, P., & Giorgio, M. (2013). The other face of ROS: a driver of stem cell expansion in colorectal cancer. Cell Stem Cell, 12(6), 635–636.  https://doi.org/10.1016/j.stem.2013.05.023.Google Scholar
  216. 216.
    Hong, A. W., Meng, Z., & Guan, K. L. (2016). The Hippo pathway in intestinal regeneration and disease. Nature Reviews. Gastroenterology & Hepatology, 13(6), 324–337.  https://doi.org/10.1038/nrgastro.2016.59.Google Scholar
  217. 217.
    Sikandar, S. S., Pate, K. T., Anderson, S., Dizon, D., Edwards, R. A., Waterman, M. L., et al. (2010). NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Research, 70(4), 1469–1478.  https://doi.org/10.1158/0008-5472.CAN-09-2557.Google Scholar
  218. 218.
    Apostolou, P., Toloudi, M., Ioannou, E., Kourtidou, E., Chatziioannou, M., Kopic, A., et al. (2013). Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells. Journal of Receptor and Signal Transduction Research, 33(6), 353–358.  https://doi.org/10.3109/10799893.2013.828072.Google Scholar
  219. 219.
    Fender, A. W., Nutter, J. M., Fitzgerald, T. L., Bertrand, F. E., & Sigounas, G. (2015). Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. Journal of Cellular Biochemistry, 116(11), 2517–2527.  https://doi.org/10.1002/jcb.25196.Google Scholar
  220. 220.
    Jin, L., Vu, T., Yuan, G., & Datta, P. K. (2017). STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Research, 77(20), 5464–5478.  https://doi.org/10.1158/0008-5472.CAN-17-0286.Google Scholar
  221. 221.
    Voorneveld, P. W., Kodach, L. L., Jacobs, R. J., van Noesel, C. J., Peppelenbosch, M. P., Korkmaz, K. S., et al. (2015). The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. British Journal of Cancer, 112(1), 122–130.  https://doi.org/10.1038/bjc.2014.560.Google Scholar
  222. 222.
    Kim, B. R., Oh, S. C., Lee, D. H., Kim, J. L., Lee, S. Y., Kang, M. H., et al. (2015). BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biology, 36(12), 9475–9486.  https://doi.org/10.1007/s13277-015-3681-y.Google Scholar
  223. 223.
    Catalano, V., Dentice, M., Ambrosio, R., Luongo, C., Carollo, R., Benfante, A., et al. (2016). Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Research, 76(5), 1237–1244.  https://doi.org/10.1158/0008-5472.CAN-15-1542.Google Scholar
  224. 224.
    Xue, R., Jia, K., Wang, J., Yang, L., Wang, Y., Gao, L., et al. (2018). A rising star in pancreatic diseases: pancreatic stellate cells. Frontiers in Physiology, 9, 754.  https://doi.org/10.3389/fphys.2018.00754.Google Scholar
  225. 225.
    Zeuner, A., Todaro, M., Stassi, G., & De Maria, R. (2014). Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell, 15(6), 692–705.  https://doi.org/10.1016/j.stem.2014.11.012.Google Scholar
  226. 226.
    Calon, A., Tauriello, D. V., & Batlle, E. (2014). TGF-beta in CAF-mediated tumor growth and metastasis. Seminars in Cancer Biology, 25, 15–22.  https://doi.org/10.1016/j.semcancer.2013.12.008.136.Google Scholar
  227. 227.
    Wang, K., & Karin, M. (2015). Tumor-elicited inflammation and colorectal cancer. Advances in Cancer Research, 128, 173–196.  https://doi.org/10.1016/bs.acr.2015.04.014.Google Scholar
  228. 228.
    Lotti, F., Jarrar, A. M., Pai, R. K., Hitomi, M., Lathia, J., Mace, A., et al. (2013). Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. The Journal of Experimental Medicine, 210(13), 2851–2872.  https://doi.org/10.1084/jem.20131195.Google Scholar
  229. 229.
    Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.Google Scholar
  230. 230.
    Koliaraki, V., Pallangyo, C. K., Greten, F. R., & Kollias, G. (2017). Mesenchymal cells in colon cancer. Gastroenterology, 152(5), 964–979.  https://doi.org/10.1053/j.gastro.2016.11.049.Google Scholar
  231. 231.
    Lu, J., Ye, X., Fan, F., Xia, L., Bhattacharya, R., Bellister, S., et al. (2013). Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell, 23(2), 171–185.  https://doi.org/10.1016/j.ccr.2012.12.021.Google Scholar
  232. 232.
    Roberts, K. J., Kershner, A. M., & Beachy, P. A. (2017). The stromal niche for epithelial stem cells: a template for regeneration and a brake on malignancy. Cancer Cell, 32(4), 404–410.  https://doi.org/10.1016/j.ccell.2017.08.007.Google Scholar
  233. 233.
    Gerling, M., Büller, N. V., Kirn, L. M., Joost, S., Frings, O., Englert, B., et al. (2016). Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nature Communications, 7, 12321.  https://doi.org/10.1038/ncomms12321.Google Scholar
  234. 234.
    Nicolas, F. E. (2017). Role of ncRNAs in development, diagnosis and treatment of human cancer. Recent Patents on Anti-Cancer Drug Discovery, 12(2), 128–135.  https://doi.org/10.2174/1574892812666170105113415.Google Scholar
  235. 235.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.Google Scholar
  236. 236.
    Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., & Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 31(22), 6593–6597.Google Scholar
  237. 237.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.Google Scholar
  238. 238.
    Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.Google Scholar
  239. 239.
    Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231–235.Google Scholar
  240. 240.
    Seok, H., Ham, J., Jang, E. S., & Chi, S. W. (2016). MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Molecules and Cells, 39(5), 375–381.  https://doi.org/10.14348/molcells.2016.0013.Google Scholar
  241. 241.
    Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews. Cancer, 9(4), 293–302.  https://doi.org/10.1038/nrc2619.Google Scholar
  242. 242.
    Acunzo, M., Romano, G., Wernicke, D., & Croce, C. M. (2015). MicroRNA and cancer—a brief overview. Adv Biol Regul, 57, 1–9.  https://doi.org/10.1016/j.jbior.2014.09.013.Google Scholar
  243. 243.
    Giovannetti, E., van der Borden, C. L., Frampton, A. E., Ali, A., Firuzi, O., & Peters, G. J. (2017). Never let it go: stopping key mechanisms underlying metastasis to fight pancreatic cancer. Seminars in Cancer Biology, 44, 43–59.  https://doi.org/10.1016/j.semcancer.2017.04.006.Google Scholar
  244. 244.
    Liu, X., Fu, Q., Du, Y., Yang, Y., & Cho, W. C. (2016). MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Current Cancer Drug Targets, 16(9), 738–754.Google Scholar
  245. 245.
    Mamoori, A., Gopalan, V., Smith, R. A., & Lam, A. K. (2016). Modulatory roles of microRNAs in the regulation of different signalling pathways in large bowel cancer stem cells. Biology of the Cell, 108(3), 51–64.  https://doi.org/10.1111/boc.201500062.Google Scholar
  246. 246.
    Kung, J. T., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics, 193(3), 651–669.  https://doi.org/10.1534/genetics.112.146704.Google Scholar
  247. 247.
    Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038.  https://doi.org/10.1038/nature09144.Google Scholar
  248. 248.
    Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W. O., Corcoran, M., Grandér, D., et al. (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440–446.  https://doi.org/10.1038/nsmb.2516.Google Scholar
  249. 249.
    Li, T., Mo, X., Fu, L., Xiao, B., & Guo, J. (2016). Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget, 7(8), 8601–8612.  https://doi.org/10.18632/oncotarget.6926.Google Scholar
  250. 250.
    Sanchez-Mejias, A., & Tay, Y. (2015). Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. Journal of Hematology & Oncology, 8, 30.  https://doi.org/10.1186/s13045-015-0129-1.Google Scholar
  251. 251.
    Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.Google Scholar
  252. 252.
    Kopp, F., & Mendell, J. T. (2018). Functional classification and experimental dissection of long noncoding RNAs. Cell, 172(3), 393–407.  https://doi.org/10.1016/j.cell.2018.01.011.Google Scholar
  253. 253.
    Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.Google Scholar
  254. 254.
    Hung, T., Wang, Y., Lin, M. F., Koegel, A. K., Kotake, Y., Grant, G. D., et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 43(7), 621–629.  https://doi.org/10.1038/ng.848.Google Scholar
  255. 255.
    Liu, C., Wu, H. T., Zhu, N., Shi, Y. N., Liu, Z., Ao, B. X., et al. (2016). Steroid receptor RNA activator: biologic function and role in disease. Clinica Chimica Acta, 459, 137–146.  https://doi.org/10.1016/j.cca.2016.06.004.Google Scholar
  256. 256.
    Thomson, D. W., & Dinger, M. E. (2016). Endogenous microRNA sponges: evidence and controversy. Nature Reviews. Genetics, 17(5), 272–283.  https://doi.org/10.1038/nrg.2016.20.Google Scholar
  257. 257.
    Dykes, I. M., & Emanueli, C. (2017). Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics & Bioinformatics, 15(3), 177–186.  https://doi.org/10.1016/j.gpb.2016.12.005.Google Scholar
  258. 258.
    Deng, H., Wang, J. M., Li, M., Tang, R., Tang, K., Su, Y., et al. (2017). Long non-coding RNAs: new biomarkers for prognosis and diagnosis of colon cancer. Tumour Biology, 39(6), 1010428317706332.  https://doi.org/10.1177/1010428317706332.Google Scholar
  259. 259.
    Yang, Y., Junjie, P., Sanjun, C., & Ma, Y. (2017). Long non-coding RNAs in colorectal cancer: progression and future directions. Journal of Cancer, 8(16), 3212–3225.  https://doi.org/10.7150/jca.19794.Google Scholar
  260. 260.
    Yang, S., Sun, Z., Zhou, Q., Wang, W., Wang, G., Song, J., et al. (2018). MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Management and Research, 10, 2249–2257.  https://doi.org/10.2147/CMAR.S166308.Google Scholar
  261. 261.
    Han, T., Hu, H., Zhuo, M., Wang, L., Cui, J. J., Jiao, F., et al. (2016). Long non-coding RNA: an emerging paradigm of pancreatic cancer. Current Molecular Medicine, 16(8), 702–709.Google Scholar
  262. 262.
    Duguang, L., Jin, H., Xiaowei, Q., Peng, X., Xiaodong, W., Zhennan, L., et al. (2017). The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biology & Therapy, 18(12), 927–936.  https://doi.org/10.1080/15384047.2017.1385682.Google Scholar
  263. 263.
    Huang, X., Xiao, R., Pan, S., Yang, X., Yuan, W., Tu, Z., et al. (2017). Uncovering the roles of long non-coding RNAs in cancer stem cells. Journal of Hematology & Oncology, 10(1), 62.  https://doi.org/10.1186/s13045-017-0428-9.Google Scholar
  264. 264.
    Heery, R., Finn, S. P., Cuffe, S., & Gray, S. G. (2017). Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel), 9(4), E38.  https://doi.org/10.3390/cancers9040038.Google Scholar
  265. 265.
    Chi, H. C., Tsai, C. Y., Tsai, M. M., Yeh, C. T., & Lin, K. H. (2017). Roles of long noncoding RNAs in recurrence and metastasis of radiotherapy-resistant cancer stem cells. International Journal of Molecular Sciences, 18(9), E1903.  https://doi.org/10.3390/ijms18091903.Google Scholar
  266. 266.
    Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579.  https://doi.org/10.1038/nri855.Google Scholar
  267. 267.
    Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics. Clinical Applications, 9, 358–367.  https://doi.org/10.1002/prca.201400114.Google Scholar
  268. 268.
    Jia, S., Zocco, D., Samuels, M. L., Chou, M. F., Chammas, R., Skog, J., et al. (2014). Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Review of Molecular Diagnostics, 14, 307–321.  https://doi.org/10.1586/14737159.2014.893828.Google Scholar
  269. 269.
    Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.Google Scholar
  270. 270.
    Lo Cicero, A., Stahl, P. D., & Raposo, G. (2015). Extracellular vesicles shuffling intercellular messages: for good or for bad. Current Opinion in Cell Biology, 35, 69–77.  https://doi.org/10.1016/j.ceb.2015.04.013.Google Scholar
  271. 271.
    Javeed, N., & Mukhopadhyay, D. (2017). Exosomes and their role in the micro-/macro-environment: a comprehensive review. Journal of Biomedical Research, 31(5), 386–394.  https://doi.org/10.7555/JBR.30.20150162.Google Scholar
  272. 272.
    Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem cell-derived extracellular vesicles and immune-modulation. Frontiers in Cell and Development Biology, 4, 83.  https://doi.org/10.3389/fcell.2016.00083.Google Scholar
  273. 273.
    Todorova, D., Simoncini, S., Lacroix, R., Sabatier, F., & Dignat-George, F. (2017). Extracellular vesicles in angiogenesis. Circulation Research, 120(10), 1658–1673.  https://doi.org/10.1161/CIRCRESAHA.117.309681.Google Scholar
  274. 274.
    Rajagopal, C., & Harikumar, K. B. (2018). The origin and functions of exosomes in cancer. Frontiers in Oncology, 8, 66.  https://doi.org/10.3389/fonc.2018.00066.Google Scholar
  275. 275.
    Yang, B., Chen, Y., & Shi, J. (2018). Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Advanced Materials, e1802896.  https://doi.org/10.1002/adma.201802896.
  276. 276.
    Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289.  https://doi.org/10.1146/annurev-cellbio-101512-122326.Google Scholar
  277. 277.
    van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews. Molecular Cell Biology, 19(4), 213–228.  https://doi.org/10.1038/nrm.2017.125.Google Scholar
  278. 278.
    Abels, E. R., & Breakefield, X. O. (2016). Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cellular and Molecular Neurobiology, 36, 301–312.  https://doi.org/10.1007/s10571-016-0366-z.Google Scholar
  279. 279.
    Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13.  https://doi.org/10.1016/j.semcancer.2014.04.009.Google Scholar
  280. 280.
    Choi, D. S., Kim, D. K., Kim, Y. K., & Gho, Y. S. (2015). Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrometry Reviews, 34, 474–490.  https://doi.org/10.1002/pmic.201200329.Google Scholar
  281. 281.
    Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N., & Lu, Q. (2012). Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proceedings of the National Academy of Sciences of the United States of America, 109, 4146–4151.  https://doi.org/10.1073/pnas.1200448109.Google Scholar
  282. 282.
    Egea-Jimenez, A. L., & Zimmermann, P. (2018). Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. Journal of Lipid Research, jlr.R083964.  https://doi.org/10.1194/jlr.R083964.
  283. 283.
    Kajimoto, T., Okada, T., Miya, S., Zhang, L., & Nakamura, S. (2013). Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multi-vesicular endosomes. Nature Communications, 4, 2712.  https://doi.org/10.1038/ncomms3712.Google Scholar
  284. 284.
    Shen, B., Fang, Y., Wu, N., & Gould, S. J. (2011). Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. The Journal of Biological Chemistry, 286, 44162–44176.  https://doi.org/10.1074/jbc.M111.274803.Google Scholar
  285. 285.
    Guo, B. B., Bellingham, S. A., & Hill, A. F. (2015). The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. The Journal of Biological Chemistry, 290, 3455–3467.  https://doi.org/10.1074/jbc.M115.684258.Google Scholar
  286. 286.
    Vedeler, A., Hollås, H., Grindheim, A. K., & Raddum, A. M. (2012). Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Current Protein & Peptide Science, 13, 401–412.Google Scholar
  287. 287.
    Janas, T., Janas, M. M., Sapoń, K., & Janas, T. (2015). Mechanisms of RNA loading into exosomes. FEBS Letters, 589(13), 1391–1398.  https://doi.org/10.1016/j.febslet.2015.04.036.Google Scholar
  288. 288.
    Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980.  https://doi.org/10.1038/ncomms3980.Google Scholar
  289. 289.
    Gezer, U., Özgür, E., Cetinkaya, M., Isin, M., & Dalay, N. (2014). Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biology International, 38(9), 1076–1079.  https://doi.org/10.1002/cbin.10301.Google Scholar
  290. 290.
    Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193–208.  https://doi.org/10.1007/s00018-017-2595-9.Google Scholar
  291. 291.
    Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 13, 1672–1686.  https://doi.org/10.1002/pmic.201200562.Google Scholar
  292. 292.
    Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primdal-Bengtson, B., et al. (2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 113, E968–E977.  https://doi.org/10.1073/pnas.1521230113.Google Scholar
  293. 293.
    Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.Google Scholar
  294. 294.
    Skotland, T., Hessvik, N. P., Sandvig, K., & Llorente, A. (2018). Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. Journal of Lipid Research, jlr.R084343.  https://doi.org/10.1194/jlr.R084343.
  295. 295.
    Sharma, R., Huang, X., Brekken, R. A., & Schroit, A. J. (2017). Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. British Journal of Cancer, 117, 545–552.  https://doi.org/10.1038/bjc.2017.183.Google Scholar
  296. 296.
    Lesur, A., & Domon, B. (2015). Advances in high-resolution accurate mass spectrometry application to targeted proteomics. Proteomics, 15, 880–890.  https://doi.org/10.1002/pmic.201400450.Google Scholar
  297. 297.
    Schey, K. L., Luther, J. M., & Rose, K. L. (2015). Proteomics characterization of exosome cargo. Methods, 87, 75–82.  https://doi.org/10.1016/j.ymeth.2015.03.018.Google Scholar
  298. 298.
    Zöller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Reviews. Cancer, 9, 40–55.  https://doi.org/10.1038/nrc2543.Google Scholar
  299. 299.
    Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.  https://doi.org/10.1016/j.jprot.2010.06.006.Google Scholar
  300. 300.
    Greening, D. W., Xu, R., Gopal, S. K., Rai, A., & Simpson, R. J. (2017). Proteomic insights into extracellular vesicle biology—defining exosomes and shed microvesicles. Expert Review of Proteomics, 14(1), 69–95.  https://doi.org/10.1080/14789450.2017.1260450.Google Scholar
  301. 301.
    Rosa-Fernandes, L., Rocha, V. B., Carregari, V. C., Urbani, A., & Palmisano, G. (2017). A perspective on extracellular vesicles proteomics. Frontiers in Chemistry, 5, 102.  https://doi.org/10.3389/fchem.2017.00102.Google Scholar
  302. 302.
    Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4(12), 4019–4031.Google Scholar
  303. 303.
    Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biology, 10, 619–624.  https://doi.org/10.1038/ncb1725.Google Scholar
  304. 304.
    Osteikoetxea, X., Benke, M., Rodriguez, M., Pálóczi, K., Sódar, B. W., Szvicsek, Z., et al. (2018). Detection and proteomic characterization of extracellular vesicles in human pancreatic juice. Biochemical and Biophysical Research Communications, 499(1), 37–43.  https://doi.org/10.1016/j.bbrc.2018.03.107.Google Scholar
  305. 305.
    Marhaba, R., Klingbeil, P., Nuebel, T., Nazarenko, I., Buechler, M. W., & Zöller, M. (2008). CD44 and EpCAM: cancer-initiating cell markers. Current Molecular Medicine, 8(8), 784–804.Google Scholar
  306. 306.
    Matsumoto, K., Umitsu, M., De Silva, D. M., Roy, A., & Bottaro, D. P. (2017). Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Science, 108(3), 296–307.  https://doi.org/10.1111/cas.13156.Google Scholar
  307. 307.
    Demory Beckler, M., Higginbotham, J. N., Franklin, J. L., Ham, A. J., Halvey, P. J., Imasuen, I. E., et al. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 12, 343–355.  https://doi.org/10.1074/mcp.M112.022806.Google Scholar
  308. 308.
    Jung, T., Castellana, D., Klingbeil, P., Cuesta Hernández, I., Vitacolonna, M., Orlicky, D. J., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.Google Scholar
  309. 309.
    Anami, K., Oue, N., Noguchi, T., Sakamoto, N., Sentani, K., Hayashi, T., et al. (2016). TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer, 19(2), 370–380.  https://doi.org/10.1007/s10120-015-0478-z.Google Scholar
  310. 310.
    Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335.  https://doi.org/10.1038/nature15756.Google Scholar
  311. 311.
    Paolillo, M., & Schinelli, S. (2017). Integrins and exosomes, a dangerous liaison in cancer progression. Cancers (Basel), 9(8), E95.  https://doi.org/10.3390/cancers9080095.Google Scholar
  312. 312.
    Philip, R., Heiler, S., Mu, W., Büchler, M. W., Zöller, M., & Thuma, F. (2015). Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget, 6(4), 2046–2063.Google Scholar
  313. 313.
    Marimpietri, D., Petretto, A., Raffaghello, L., Pezzolo, A., Gagliani, C., Tacchetti, C., et al. (2013). Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One, 8(9), e75054.  https://doi.org/10.1371/journal.pone.0075054.Google Scholar
  314. 314.
    Rappa, G., Mercapide, J., Anzanello, F., Pope, R. M., & Lorico, A. (2013). Biochemical and biological characterization of exosomes containing prominin-1/CD133. Molecular Cancer, 12, 62.  https://doi.org/10.1186/1476-4598-12-62.Google Scholar
  315. 315.
    Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget, 10.18632/oncotarget.2462, 6, 3280, 3291.Google Scholar
  316. 316.
    Zöller, M. (2016). Exosomes in cancer disease. Methods in Molecular Biology, 1381, 111–149.  https://doi.org/10.1007/978-1-4939-3204-7_7.Google Scholar
  317. 317.
    Mulcahy, L. A., Pink, R. C., & Carter, D. R. (2014). Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 3.  https://doi.org/10.3402/jev.v3.24641.
  318. 318.
    Buzás, E. I., Tóth, E. Á., Sódar, B. W., & Szabó-Taylor, K. É. (2018). Molecular interactions at the surface of extracellular vesicles. Seminars in Immunopathology.  https://doi.org/10.1007/s00281-018-0682-0.
  319. 319.
    Rackov, G., Garcia-Romero, N., Esteban-Rubio, S., Carrión-Navarro, J., Belda-Iniesta, C., & Ayuso-Sacido, A. (2018). Vesicle-mediated control of cell function: the role of extracellular matrix and microenvironment. Frontiers in Physiology, 9, 651.  https://doi.org/10.3389/fphys.2018.00651.Google Scholar
  320. 320.
    Sanderson, R.D., Bandari, S.K., & Vlodavsky, I. (2017). Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol, S0945-053X(17)30311-30316. doi:  https://doi.org/10.1016/j.matbio.2017.10.007.
  321. 321.
    Mu, W., Rana, S., & Zöller, M. (2013). Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia, 15, 875–887.Google Scholar
  322. 322.
    Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., Shehada, H. M. A., et al. (2017). Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Scientific Reports, 7(1), 13321.  https://doi.org/10.1038/s41598-017-12919-x.Google Scholar
  323. 323.
    Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6, 7164.  https://doi.org/10.1038/ncomms8164.Google Scholar
  324. 324.
    Del Vecchio, F., Lee, G. H., Hawezi, J., Bhome, R., Pugh, S., Sayan, E., et al. (2018). Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Letters, 421, 94–102.  https://doi.org/10.1016/j.canlet.2018.02.022.Google Scholar
  325. 325.
    French, K. C., Antonyak, M. A., & Cerione, R. A. (2017). Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Seminars in Cell & Developmental Biology, 67, 48–55.  https://doi.org/10.1016/j.semcdb.2017.01.002.Google Scholar
  326. 326.
    Moller-Tank, S., & Maury, W. (2014). Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology, 468-470, 565–580.  https://doi.org/10.1016/j.virol.2014.09.009.Google Scholar
  327. 327.
    Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. (2013). Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proceedings of the National Academy of Sciences of the United States of America, 110, 17380–17385.  https://doi.org/10.1073/pnas.1304266110.Google Scholar
  328. 328.
    Fei, F., Joo, E. J., Tarighat, S. S., Schiffer, I., Paz, H., Fabbri, M., et al. (2015). B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget, 6, 11378–11394.  https://doi.org/10.18632/oncotarget.3409.Google Scholar
  329. 329.
    Gomes, J., Gomes-Alves, P., Carvalho, S. B., Peixoto, C., Alves, P. M., Altevogt, P., et al. (2015). Extracellular vesicles from ovarian carcinoma cells display specific glycosignatures. Biomolecules, 5, 1741–1761.  https://doi.org/10.3390/biom5031741.Google Scholar
  330. 330.
    Rana, S., Yue, S., Stadel, D., & Zöller, M. (2012). Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. The International Journal of Biochemistry & Cell Biology, 44(9), 1574–1584.  https://doi.org/10.1016/j.biocel.2012.06.018.Google Scholar
  331. 331.
    Montecalvo, A., Larregina, A. T., Shufesky, W. J., Stolz, D. B., Sullivan, M. L., Karlsson, J. M., et al. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 119, 756–766.  https://doi.org/10.1182/blood-2011-02-338004.Google Scholar
  332. 332.
    Del Conde, I., Shrimpton, C. N., Thiagarajan, P., & López, J. A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 106, 1604–1611.  https://doi.org/10.1182/blood-2004-03-1095.Google Scholar
  333. 333.
    Tian, T., Zhu, Y. L., Hu, F. H., Wang, Y. Y., Huang, N. P., & Xiao, Z. D. (2013). Dynamics of exosome internalization and trafficking. Journal of Cellular Physiology, 228, 1487–1495.  https://doi.org/10.1002/jcp.24304.Google Scholar
  334. 334.
    Feng, D., Zhao, W. L., Ye, Y. Y., Bai, X. C., Liu, R. Q., Chang, L. F., et al. (2010). Cellular internalization of exosomes occurs through phagocytosis. Traffic, 11, 675–687.  https://doi.org/10.1111/j.1600-0854.2010.01041.x.Google Scholar
  335. 335.
    Freeman, S. A., & Grinstein, S. (2014). Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunological Reviews, 262, 193–215.  https://doi.org/10.1111/imr.12212.Google Scholar
  336. 336.
    Nakase, I., Kobayashi, N. B., Takatani-Nakase, T., & Yoshida, T. (2015). Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Scientific Reports, 5, 10300.  https://doi.org/10.1038/srep10300.Google Scholar
  337. 337.
    Thuma, F., & Zöller, M. (2014). Outsmart tumor exosomes to steal the cancer initiating cell its niche. Seminars in Cancer Biology, 28, 39–50.  https://doi.org/10.1016/j.semcancer.2014.02.011.Google Scholar
  338. 338.
    Nanbo, A., Kawanishi, E., Yoshida, R., & Yoshiyama, H. (2013). Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. Journal of Virology, 87, 10334–10347.  https://doi.org/10.1128/JVI.01310-13.Google Scholar
  339. 339.
    Lakkaraju, A., & Rodriguez-Boulan, E. (2008). Itinerant exosomes: emerging roles in cell and tissue polarity. Trends in Cell Biology, 18, 199–209.  https://doi.org/10.1016/j.tcb.2008.03.002.Google Scholar
  340. 340.
    Leone, D. A., Peschel, A., Brown, M., Schachner, H., Ball, M. J., Gyuraszova, M., et al. (2017). Surface LAMP-2 is an endocytic receptor that diverts antigen internalized by human dendritic cells into highly immunogenic exosomes. Journal of Immunology, 199, 531–546.  https://doi.org/10.4049/jimmunol.1601263.Google Scholar
  341. 341.
    Holder, B., Jones, T., Sancho Shimizu, V., Rice, T. F., Donaldson, B., Bouqueau, M., et al. (2016). Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic, 17, 168–178.  https://doi.org/10.1111/tra.12352.Google Scholar
  342. 342.
    Heusermann, W., Hean, J., Trojer, D., Steib, E., von Bueren, S., Graff-Meyer, A., et al. (2016). Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. The Journal of Cell Biology, 213, 173–184.  https://doi.org/10.1083/jcb.201506084.Google Scholar
  343. 343.
    Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13147–13152.  https://doi.org/10.1073/pnas.1104261108.Google Scholar
  344. 344.
    Zhang, X., Wang, X., Zhu, H., Kranias, E. G., Tang, Y., Peng, T., et al. (2012). Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One, 7(3), e32765.  https://doi.org/10.1371/journal.pone.0032765.Google Scholar
  345. 345.
    Arscott, W. T., Tandle, A. T., Zhao, S., Shabason, J. E., Gordon, I. K., Schlaff, C. D., et al. (2013). Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Translational Oncology, 6(6), 638–648.Google Scholar
  346. 346.
    Atay, S., Gercel-Taylor, C., & Taylor, D. D. (2011). Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1β production by macrophages. American Journal of Reproductive Immunology, 66(4), 259–269.  https://doi.org/10.1111/j.1600-0897.2011.00995.x.Google Scholar
  347. 347.
    Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. The Journal of Biological Chemistry, 290, 4545–4551.  https://doi.org/10.1074/jbc.C114.617662.Google Scholar
  348. 348.
    Gu, X., Erb, U., Büchler, M. W., & Zöller, M. (2015). Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. International Journal of Cancer, 136, E74–E84.  https://doi.org/10.1002/ijc.29100.Google Scholar
  349. 349.
    Lamichhane, T. N., Jeyaram, A., Patel, D. B., Parajuli, B., Livingston, N. K., Arumugasaamy, N., et al. (2016). Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cellular and Molecular Bioengineering, 9, 315–324.  https://doi.org/10.1007/s12195-016-0457-4.Google Scholar
  350. 350.
    Saari, H., Lázaro-Ibáñez, E., Viitala, T., Vuorimaa-Laukkanen, E., Siljander, P., & Yliperttula, M. (2015). Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. Journal of Controlled Release, 220(Pt B), 727–737.  https://doi.org/10.1016/j.jconrel.2015.09.031.Google Scholar
  351. 351.
    Kapustin, A. N., Schoppet, M., Schurgers, L. J., Reynolds, J. L., McNair, R., Heiss, A., et al. (2017). Prothrombin loading of vascular smooth muscle cell-derived exosomes regulates coagulation and calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, e22–e32.  https://doi.org/10.1161/ATVBAHA.116.308886.Google Scholar
  352. 352.
    Zarovni, N., Corrado, A., Guazzi, P., Zocco, D., Lari, E., Radano, G., et al. (2015). Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods, 87, 46–58.  https://doi.org/10.1016/j.ymeth.2015.05.028.Google Scholar
  353. 353.
    Théry, C., Duban, L., Segura, E., Véron, P., Lantz, O., & Amigorena, S. (2002). Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nature Immunology, 3, 1156–1162.  https://doi.org/10.1038/ni854.Google Scholar
  354. 354.
    Simhadri, V. R., Reiners, K. S., Hansen, H. P., Topolar, D., Simhadri, V. L., Nohroudi, K., et al. (2008). Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One, 3, e3377.  https://doi.org/10.1371/journal.pone.0003377.Google Scholar
  355. 355.
    Viaud, S., Terme, M., Flament, C., Taieb, J., André, F., Novault, S., et al. (2009). Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS, 4(3), e4942.  https://doi.org/10.1371/journal.pone.0004942.Google Scholar
  356. 356.
    Vulpis, E., Cecere, F., Molfetta, R., Soriani, A., Fionda, C., Peruzzi, G., et al. (2017). Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-kB axis. Oncoimmunology, 6, e1279372.  https://doi.org/10.1080/2162402X.2017.1279372.Google Scholar
  357. 357.
    Budnik, V., Ruiz-Cañada, C., & Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nature Reviews. Neuroscience, 17, 160–172.  https://doi.org/10.1038/nrn.2015.29.Google Scholar
  358. 358.
    Gong, J., Körner, R., Gaitanos, L., & Klein, R. (2016). Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. The Journal of Cell Biology, 214, 35–44.  https://doi.org/10.1083/jcb.201601085.Google Scholar
  359. 359.
    Fitzgerald, T. L., & McCubrey, J. A. (2014). Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul, 56, 45–50.  https://doi.org/10.1016/j.jbior.2014.05.001.Google Scholar
  360. 360.
    Cherciu, I., Bărbălan, A., Pirici, D., Mărgăritescu, C., & Săftoiu, A. (2014). Stem cells, colorectal cancer and cancer stem cell markers correlations. Current Health Sciences Journal, 40(3), 153–161.  https://doi.org/10.12865/CHSJ.40.03.01.Google Scholar
  361. 361.
    Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F. H., et al. (2005). Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clinical Cancer Research, 11(8), 2840–2852.Google Scholar
  362. 362.
    Claas, C., Wahl, J., Orlicky, D. J., Karaduman, H., Schnölzer, M., Kempf, T., et al. (2005). The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. The Biochemical Journal, 389(Pt 1), 99–110.Google Scholar
  363. 363.
    Kanatsu-Shinohara, M., Takashima, S., Ishii, K., & Shinohara, T. (2011). Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One, 6(8), e23663.  https://doi.org/10.1371/journal.pone.0023663.Google Scholar
  364. 364.
    Le Naour, F., André, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., et al. (2006). Profiling of the tetraspanin web of human colon cancer cells. Molecular & Cellular Proteomics, 5(5), 845–857.Google Scholar
  365. 365.
    Margadant, C., Frijns, E., Wilhelmsen, K., & Sonnenberg, A. (2008). Regulation of hemidesmosome disassembly by growth factor receptors. Current Opinion in Cell Biology, 20(5), 589–596.  https://doi.org/10.1016/j.ceb.2008.05.001.Google Scholar
  366. 366.
    Ladwein, M., Pape, U. F., Schmidt, D. S., Schnölzer, M., Fiedler, S., Langbein, L., et al. (2005). The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Experimental Cell Research, 309(2), 345–357.Google Scholar
  367. 367.
    Kuhn, S., Koch, M., Nübel, T., Ladwein, M., Antolovic, D., Klingbeil, P., et al. (2007). A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Molecular Cancer Research, 5(6), 553–567.Google Scholar
  368. 368.
    Okada, T., Nakamura, T., Watanabe, T., Onoda, N., Ashida, A., Okuyama, R., et al. (2014). Coexpression of EpCAM, CD44 variant isoforms and claudin-7 in anaplastic thyroid carcinoma. PLoS One, 9(4), e94487.  https://doi.org/10.1371/journal.pone.0094487.Google Scholar
  369. 369.
    Wu, C. J., Mannan, P., Lu, M., & Udey, M. C. (2013). Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. The Journal of Biological Chemistry, 288(17), 12253–12268.  https://doi.org/10.1074/jbc.M113.457499.Google Scholar
  370. 370.
    Matzke-Ogi, A., Jannasch, K., Shatirishvili, M., Fuchs, B., Chiblak, S., Morton, J., et al. (2016). Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling., 150(2), Gastroenterology, 513–Gastroent525.e10.  https://doi.org/10.1053/j.gastro.2015.10.020.
  371. 371.
    Parton, R. G., & del Pozo, M. A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews. Molecular Cell Biology, 14(2), 98–112.  https://doi.org/10.1038/nrm3512.Google Scholar
  372. 372.
    Lampe, M., Vassilopoulos, S., & Merrifield, C. (2016). Clathrin coated pits, plaques and adhesion. Journal of Structural Biology, 196(1), 48–56.  https://doi.org/10.1016/j.jsb.2016.07.009.Google Scholar
  373. 373.
    Marsh, D., Horváth, L. I., Swamy, M. J., Mantripragada, S., & Kleinschmidt, J. H. (2002). Interaction of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions (review). Molecular Membrane Biology, 19(4), 247–255.Google Scholar
  374. 374.
    Bottini, M., Mebarek, S., Anderson, K. L., Strzelecka-Kiliszek, A., Bozycki, L., Simão, A. M. S., et al. (2018). Matrix vesicles from chondrocytes and osteoblasts: their biogenesis, properties, functions and biomimetic models. Biochimica et Biophysica Acta, 1862(3), 532–546.  https://doi.org/10.1016/j.bbagen.2017.11.005.Google Scholar
  375. 375.
    Andreu, Z., & Yáñez-Mó, M. (2014). Tetraspanins in extracellular vesicle formation and function. Frontiers in Immunology, 5, 442.  https://doi.org/10.3389/fimmu.2014.00442.Google Scholar
  376. 376.
    Stuffers, S., Sem Wegner, C., Stenmark, H., & Brech, A. (2009). Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 925–937.  https://doi.org/10.1111/j.1600-0854.2009.00920.x.
  377. 377.
    van Niel, G., Bergam, P., Di Cicco, A., Hurbain, I., Lo Cicero, A., Dingli, F., et al. (2015). Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Reports, 13(1), 43–51.  https://doi.org/10.1016/j.celrep.2015.08.057.Google Scholar
  378. 378.
    Buschow, S. I., Nolte-'t Hoen, E. N., van Niel, G., Pols, M. S., ten Broeke, T., Lauwen, M., et al. (2009). MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic, 10(10), 1528–1542.  https://doi.org/10.1111/j.1600-0854.2009.00963.x.Google Scholar
  379. 379.
    Zimmerman, B., Kelly, B., McMillan, B. J., Seegar, T. C. M., Dror, R. O., Kruse, A. C., et al. (2016). Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell, 167(4), 1041–1051.e11.  https://doi.org/10.1016/j.cell.2016.09.056.Google Scholar
  380. 380.
    Odintsova, E., van Niel, G., Conjeaud, H., Raposo, G., Iwamoto, R., Mekada, E., et al. (2013). Metastasis suppressor tetraspanin CD82/KAI1 regulates ubiquitylation of epidermal growth factor receptor. The Journal of Biological Chemistry, 288(36), 26323–26334.  https://doi.org/10.1074/jbc.M112.439380.Google Scholar
  381. 381.
    Gräßel, L., Fast, L. A., Scheffer, K. D., Boukhallouk, F., Spoden, G. A., Tenzer, S., et al. (2016). The CD63-syntenin-1 complex controls post-endocytic trafficking of oncogenic human papillomaviruses. Scientific Reports, 6, 32337.  https://doi.org/10.1038/srep32337.Google Scholar
  382. 382.
    Li, X., Zhao, H., Gu, J., & Zheng, L. (2015). Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. International Journal of Clinical and Experimental Pathology, 8(10), 12084–12092 eCollection 2015.Google Scholar
  383. 383.
    Schulze, U., Brast, S., Grabner, A., Albiker, C., Snieder, B., Holle, S., et al. (2017). Tetraspanin CD63 controls basolateral sorting of organic cation transporter 2 in renal proximal tubules. The FASEB Journal, 31(4), 1421–1433.  https://doi.org/10.1096/fj.201600901R.Google Scholar
  384. 384.
    Zumaquero, E., Muñoz, P., Cobo, M., Lucena, G., Pavón, E. J., Martín, A., et al. (2010). Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Experimental Cell Research, 316(16), 2692–2706.  https://doi.org/10.1016/j.yexcr.2010.05.032.Google Scholar
  385. 385.
    Erb, U., Zhao, K., Wang, Z., Xiao, L., & Zöller, M. (2017). Murine and human pancreatic tumor exosome recovery in mouse serum: diagnostic and prognostic potential and target cell delivery. Cancer Letters, 403, 1–12.  https://doi.org/10.1016/j.canlet.2017.06.005.Google Scholar
  386. 386.
    Hurwitz, S. N., Nkosi, D., Conlon, M. M., York, S. B., Liu, X., Tremblay, D. C., et al. (2017). CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. Journal of Virology, 91(5), e02251–e02216.  https://doi.org/10.1128/JVI.02251-16.Google Scholar
  387. 387.
    Kristiansen, G., Sammar, M., & Altevogt, P. (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. Journal of Molecular Histology, 35(3), 255–262.Google Scholar
  388. 388.
    Corbeil, D., Joester, A., Fargeas, C. A., Jászai, J., Garwood, J., Hellwig, A., et al. (2009). Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia, 57(8), 860–874.  https://doi.org/10.1002/glia.20812.Google Scholar
  389. 389.
    Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247.  https://doi.org/10.1126/science.1153124.Google Scholar
  390. 390.
    Badawy, S. M. M., Okada, T., Kajimoto, T., Hirase, M., Matovelo, S. A., Nakamura, S., et al. (2018). Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. The Journal of Biological Chemistry, 293(21), 8208–8216.  https://doi.org/10.1074/jbc.RA118.001986.Google Scholar
  391. 391.
    Hartman, N. C., & Groves, J. T. (2011). Signaling clusters in the cell membrane. Current Opinion in Cell Biology, 23(4), 370–376.  https://doi.org/10.1016/j.ceb.2011.05.003.Google Scholar
  392. 392.
    Gonnord, P., Blouin, C. M., & Lamaze, C. (2012). Membrane trafficking and signaling: two sides of the same coin. Seminars in Cell & Developmental Biology, 23(2), 154–164.  https://doi.org/10.1016/j.semcdb.2011.11.002.Google Scholar
  393. 393.
    Head, B. P., Patel, H. H., & Insel, P. A. (2014). Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochimica et Biophysica Acta, 1838(2), 532–545.  https://doi.org/10.1016/j.bbamem.2013.07.018.Google Scholar
  394. 394.
    Melo, S. A., Sugimoto, H., O'Connell, J. T., Kato, N., Villanueva, A., Vidal, A., et al. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26(5), 707–721.  https://doi.org/10.1016/j.ccell.2014.09.005.Google Scholar
  395. 395.
    Nag, A., & Steitz, J. A. (2012). Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing. RNA Biology, 9(3), 334–342.  https://doi.org/10.4161/rna.19431.Google Scholar
  396. 396.
    Chang, A. Y., Castel, S. E., Ernst, E., Kim, H. S., & Martienssen, R. A. (2017). The conserved RNA binding cyclophilin, Rct1, regulates small RNA biogenesis and splicing independent of heterochromatin assembly. Cell Reports, 19(12), 2477–2489.  https://doi.org/10.1016/j.celrep.2017.05.086.Google Scholar
  397. 397.
    Tran, N. (2016). Cancer exosomes as miRNA factories. Trends Cancer, 2(7), 329–331.  https://doi.org/10.1016/j.trecan.2016.05.008.Google Scholar
  398. 398.
    Gao, T., Shu, J., & Cui, J. (2018). A systematic approach to RNA-associated motif discovery. BMC Genomics, 19(1), 146.  https://doi.org/10.1186/s12864-018-4528-x.Google Scholar
  399. 399.
    Shapiro, I. M., Landis, W. J., & Risbud, M. V. (2015). Matrix vesicles: are they anchored exosomes? Bone, 79, 29–36.  https://doi.org/10.1016/j.bone.2015.05.013.Google Scholar
  400. 400.
    Belov, L., Matic, K. J., Hallal, S., Best, O. G., Mulligan, S. P., & Christopherson, R. I. (2016). Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles, 5, 25355.  https://doi.org/10.3402/jev.v5.25355.Google Scholar
  401. 401.
    Chase, S. D., Magnani, J. L., & Simon, S. I. (2012). E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease. Annals of Biomedical Engineering, 40(4), 849–859.  https://doi.org/10.1007/s10439-011-0507-y.Google Scholar
  402. 402.
    Levy, S., Todd, S. C., & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annual Review of Immunology, 16, 89–109.Google Scholar
  403. 403.
    Zech, D., Rana, S., Büchler, M. W., & Zöller, M. (2012). Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Communication and Signaling: CCS, 10(1), 37.  https://doi.org/10.1186/1478-811X-10-37.Google Scholar
  404. 404.
    Lau, L. M., Wee, J. L., Wright, M. D., Moseley, G. W., Hogarth, P. M., Ashman, L. K., et al. (2004). The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 104(8), 2368–2375.Google Scholar
  405. 405.
    Zhao, K., Erb, U., Hackert, T., Zöller, M., & Yue, S. (2018). Distorted leukocyte migration, angiogenesis, wound repair and metastasis in Tspan8 and Tspan8/CD151 double knockout mice indicate complementary activities of Tspan8 and CD51. Biochimica et Biophysica Acta, 1865(2), 379–391.  https://doi.org/10.1016/j.bbamcr.2017.11.007.Google Scholar
  406. 406.
    Yue, S., Mu, W., Erb, U., & Zöller, M. (2015). The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget, 6(4), 2366–2384.Google Scholar
  407. 407.
    Kyuno, D., Zhao, K., Bauer, N., Ryschich, E., & Zöller, M. (2018). Therapeutic targeting cancer-initiating cell markers by exosome miRNA: efficacy and functional consequences exemplified for claudin7 and EpCAM. Translational Oncology, 12(2), 191–199.  https://doi.org/10.1016/j.tranon.2018.08.021.Google Scholar
  408. 408.
    Henne, W. M., Liou, J., & Emr, S. D. (2015). Molecular mechanisms of inter-organelle ER-PM contact sites. Current Opinion in Cell Biology, 35, 123–130.  https://doi.org/10.1016/j.ceb.2015.05.001.Google Scholar
  409. 409.
    Blank, F., Wehrli, M., Lehmann, A., Baum, O., Gehr, P., von Garnier, C., et al. (2011). Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology, 216(1–2), 86–95.  https://doi.org/10.1016/j.imbio.2010.02.006.Google Scholar
  410. 410.
    Nelson, G. M., Padera, T. P., Garkavtsev, I., Shioda, T., & Jain, R. K. (2007). Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia, 9(12), 1038–1045.Google Scholar
  411. 411.
    Nogués, L., Benito-Martin, A., Hergueta-Redondo, M., & Peinado, H. (2018). The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Molecular Aspects of Medicine, 60, 15–26.  https://doi.org/10.1016/j.mam.2017.11.012.Google Scholar
  412. 412.
    Li, M., Lu, Y., Xu, Y., Wang, J., Zhang, C., Du, Y., et al. (2018). Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene, S0378-1119(18), 30787-X.  https://doi.org/10.1016/j.gene.2018.07.018.Google Scholar
  413. 413.
    Shen, L., Weber, C. R., & Turner, J. R. (2008). The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. The Journal of Cell Biology, 181(4), 683–695.  https://doi.org/10.1083/jcb.200711165.Google Scholar
  414. 414.
    Rilla, K., Siiskonen, H., Tammi, M., & Tammi, R. (2014). Hyaluronan-coated extracellular vesicles—a novel link between hyaluronan and cancer. Advances in Cancer Research, 123, 121–148.  https://doi.org/10.1016/B978-0-12-800092-2.00005-8.Google Scholar
  415. 415.
    Purushothaman, A., Bandari, S. K., Liu, J., Mobley, J. A., Brown, E. E., & Sanderson, R. D. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry, 291(4), 1652–1663.  https://doi.org/10.1074/jbc.M115.686295.Google Scholar
  416. 416.
    Dismuke, W. M., Klingeborn, M., & Stamer, W. D. (2016). Mechanism of fibronectin binding to human trabecular meshwork exosomes and its modulation by dexamethasone. PLoS One, 11(10), e0165326.  https://doi.org/10.1371/journal.pone.0165326 eCollection 2016.Google Scholar
  417. 417.
    Shimoda, M., & Khokha, R. (2013). Proteolytic factors in exosomes. Proteomics, 13(10–11), 1624–1636.  https://doi.org/10.1002/pmic.201200458.Google Scholar
  418. 418.
    Sevenich, L., & Joyce, J. A. (2014). Pericellular proteolysis in cancer. Genes & Development, 28(21), 2331–2347.  https://doi.org/10.1101/gad.250647.114.Google Scholar
  419. 419.
    Silva, A. M., Teixeira, J. H., Almeida, M. I., Gonçalves, R. M., Barbosa, M. A., & Santos, S. G. (2017). Extracellular vesicles: immunomodulatory messengers in the context of tissue repair/regeneration. European Journal of Pharmaceutical Sciences, 98, 86–95.  https://doi.org/10.1016/j.ejps.2016.09.017.Google Scholar
  420. 420.
    Than, U. T. T., Guanzon, D., Leavesley, D., & Parker, T. (2017). association of extracellular membrane vesicles with cutaneous wound healing. International Journal of Molecular Sciences, 18(5), E956.  https://doi.org/10.3390/ijms18050956.Google Scholar
  421. 421.
    Bandari, S. K., Purushothaman, A., Ramani, V. C., Brinkley, G. J., Chandrashekar, D. S., Varambally, S., et al. (2018). Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 65, 104–118.  https://doi.org/10.1016/j.matbio.2017.09.001.Google Scholar
  422. 422.
    Shi, F., & Sottile, J. (2011). MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin. Journal of Cell Science, 124(Pt 23), 4039–4050.  https://doi.org/10.1242/jcs.087858.Google Scholar
  423. 423.
    Jessen, T. N., & Jessen, J. R. (2017). VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix. Experimental Cell Research, 361(2), 265–276.  https://doi.org/10.1016/j.yexcr.2017.10.026.Google Scholar
  424. 424.
    Nalivaeva, N. N., Belyaev, N. D., Kerridge, C., & Turner, A. J. (2014). Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 235.  https://doi.org/10.3389/fnagi.2014.00235.Google Scholar
  425. 425.
    Jung, T., Gross, W., & Zöller, M. (2011). CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. The Journal of Biological Chemistry, 286(18), 15862–15874.  https://doi.org/10.1074/jbc.M110.208421.Google Scholar
  426. 426.
    Quesenberry, P. J., Aliotta, J., Deregibus, M. C., & Camussi, G. (2015). Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Research & Therapy, 6, 153.  https://doi.org/10.1186/s13287-015-0150-x.Google Scholar
  427. 427.
    Kanada, M., Bachmann, M. H., Hardy, J. W., Frimannson, D. O., Bronsart, L., Wang, A., et al. (2015). Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proceedings of the National Academy of Sciences of the United States of America, 112(12), E1433–E1442.  https://doi.org/10.1073/pnas.1418401112.Google Scholar
  428. 428.
    Shin, S. J., Smith, J. A., Rezniczek, G. A., Pan, S., Chen, R., Brentnall, T. A., et al. (2013). Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19414–19419.  https://doi.org/10.1073/pnas.1309720110.Google Scholar
  429. 429.
    Rana, S., Malinowska, K., & Zöller, M. (2013). Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, 15(3), 281–295.Google Scholar
  430. 430.
    Wang, Z., Zhao, K., Hackert, T., & Zöller, M. (2018). CD44/CD44v6 a reliable companion in cancer-initiating cell maintenance and tumor progression. Frontiers in Cell and Development Biology, 6, 97.  https://doi.org/10.3389/fcell.2018.00097.Google Scholar
  431. 431.
    Song, X., Ding, Y., Liu, G., Yang, X., Zhao, R., Zhang, Y., et al. (2016). Cancer cell-derived exosomes induce mitogen-activated protein kinase-dependent monocyte survival by transport of functional receptor tyrosine kinases. The Journal of Biological Chemistry, 291(16), 8453–8464.  https://doi.org/10.1074/jbc.M116.716316.Google Scholar
  432. 432.
    Zhang, H., Deng, T., Liu, R., Bai, M., Zhou, L., Wang, X., et al. (2017). Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nature Communications, 8, 15016.  https://doi.org/10.1038/ncomms15016.Google Scholar
  433. 433.
    Bendinelli, P., Maroni, P., Matteucci, E., & Desiderio, M. A. (2017). Epigenetic regulation of HGF/Met receptor axis is critical for the outgrowth of bone metastasis from breast carcinoma. Cell Death & Disease, 8(2), e2578.  https://doi.org/10.1038/cddis.2016.403.Google Scholar
  434. 434.
    Yang, W. W., Yang, L. Q., Zhao, F., Chen, C. W., Xu, L. H., Fu, J., et al. (2017). Epiregulin promotes lung metastasis of salivary adenoid cystic carcinoma. Theranostics, 7(15), 3700–3714.  https://doi.org/10.7150/thno.19712.Google Scholar
  435. 435.
    Kwon, S. H., Liu, K. D., & Mostov, K. E. (2014). Intercellular transfer of GPRC5B via exosomes drives HGF-mediated outward growth. Current Biology, 24(2), 199–204.  https://doi.org/10.1016/j.cub.2013.12.010.Google Scholar
  436. 436.
    Fuchs, K., Hippe, A., Schmaus, A., Homey, B., Sleeman, J. P., & Orian-Rousseau, V. (2013). Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death & Disease, 4, e819.  https://doi.org/10.1038/cddis.2013.364.Google Scholar
  437. 437.
    Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., et al. (2003). RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood, 102(4), 1169–1177.Google Scholar
  438. 438.
    Zhu, B., Suzuki, K., Goldberg, H. A., Rittling, S. R., Denhardt, D. T., McCulloch, C. A., et al. (2004). Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. Journal of Cellular Physiology, 198(1), 155–167.Google Scholar
  439. 439.
    Che, S. P. Y., Park, J. Y., & Stokol, T. (2017). Tissue factor-expressing tumor-derived extracellular vesicles activate quiescent endothelial cells via protease-activated receptor-1. Frontiers in Oncology, 7, 261.  https://doi.org/10.3389/fonc.2017.00261.Google Scholar
  440. 440.
    Gilliam, D. T., Menon, V., Bretz, N. P., & Pruszak, J. (2017). The CD24 surface antigen in neural development and disease. Neurobiology of Disease, 99, 133–144.  https://doi.org/10.1016/j.nbd.2016.12.011.Google Scholar
  441. 441.
    Lim, J., Lee, K. M., Shim, J., & Shin, I. (2014). CD24 regulates stemness and the epithelial to mesenchymal transition through modulation of Notch1 mRNA stability by p38MAPK. Archives of Biochemistry and Biophysics, 558, 120–126.  https://doi.org/10.1016/j.abb.2014.06.022.Google Scholar
  442. 442.
    Lee, T. K., Castilho, A., Cheung, V. C., Tang, K. H., Ma, S., & Ng, I. O. (2011). CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell, 9(1), 50–63.  https://doi.org/10.1016/j.stem.2011.06.005.Google Scholar
  443. 443.
    Takenobu, H., Shimozato, O., Nakamura, T., Ochiai, H., Yamaguchi, Y., Ohira, M., et al. (2011). CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene, 30(1), 97–105.  https://doi.org/10.1038/onc.2010.383.Google Scholar
  444. 444.
    Zhang, M., Liu, Y., Feng, H., Bian, X., Zhao, W., Yang, Z., et al. (2013). CD133 affects the invasive ability of HCT116 cells by regulating TIMP-2. The American Journal of Pathology, 182(2), 565–576.  https://doi.org/10.1016/j.ajpath.2012.10.015.Google Scholar
  445. 445.
    Lee, J. W., Lee, Y. C., Na, S. Y., Jung, D. J., & Lee, S. K. (2001). Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors. Cellular and Molecular Life Sciences, 58(2), 289–297.Google Scholar
  446. 446.
    Mazzi, S., Lordier, L., Debili, N., Raslova, H., & Vainchenker, W. (2018). Megakaryocyte and polyploidization. Experimental Hematology, 57, 1–13.  https://doi.org/10.1016/j.exphem.2017.10.001.Google Scholar
  447. 447.
    Heneberg, P. (2016). Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Critical Reviews in Oncology/Hematology, 97, 303–311.  https://doi.org/10.1016/j.critrevonc.2015.09.008.Google Scholar
  448. 448.
    Cho, J. A., Park, H., Lim, E. H., & Lee, K. W. (2012). Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. International Journal of Oncology, 40(1), 130–138.  https://doi.org/10.3892/ijo.2011.1193.Google Scholar
  449. 449.
    Record, M., Poirot, M., & Silvente-Poirot, S. (2014). Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie, 96, 67–74.  https://doi.org/10.1016/j.biochi.2013.06.016.Google Scholar
  450. 450.
    Fonseca, P., Vardaki, I., Occhionero, A., & Panaretakis, T. (2016). Metabolic and signaling functions of cancer cell-derived extracellular vesicles. International Review of Cell and Molecular Biology, 326, 175–199.  https://doi.org/10.1016/bs.ircmb.2016.04.004.Google Scholar
  451. 451.
    Skotland, T., Sandvig, K., & Llorente, A. (2017). Lipids in exosomes: current knowledge and the way forward. Progress in Lipid Research, 66, 30–41.  https://doi.org/10.1016/j.plipres.2017.03.001.Google Scholar
  452. 452.
    García-González, V., Díaz-Villanueva, J. F., Galindo-Hernández, O., Martínez-Navarro, I., Hurtado-Ureta, G., & Pérez-Arias, A. A. (2018). Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development. International Journal of Molecular Sciences, 19(9), E2527.  https://doi.org/10.3390/ijms19092527.Google Scholar
  453. 453.
    Hsu, M. C., & Hung, W. C. (2018). Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Molecular Cancer, 17(1), 35.  https://doi.org/10.1186/s12943-018-0791-3.Google Scholar
  454. 454.
    Alcayaga-Miranda, F., González, P. L., Lopez-Verrilli, A., Varas-Godoy, M., Aguila-Díaz, C., Contreras, L., et al. (2016). Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget, 7(28), 44462–44477.  https://doi.org/10.18632/oncotarget.9852.Google Scholar
  455. 455.
    van Balkom, B. W., Eisele, A. S., Pegtel, D. M., Bervoets, S., & Verhaar, M. C. (2015). Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles, 4, 26760.  https://doi.org/10.3402/jev.v4.26760.Google Scholar
  456. 456.
    Deng, X., Wu, B., Xiao, K., Kang, J., Xie, J., Zhang, X., et al. (2015). MiR-146b-5p promotes metastasis and induces epithelial-mesenchymal transition in thyroid cancer by targeting ZNRF3. Cellular Physiology and Biochemistry, 35(1), 71–82.  https://doi.org/10.1159/000369676.Google Scholar
  457. 457.
    Rutnam, Z. J., & Yang, B. B. (2012). The non-coding 3’ UTR of CD44 induces metastasis by regulating extracellular matrix functions. Journal of Cell Science, 125(Pt 8), 2075–2085.  https://doi.org/10.1242/jcs100818.Google Scholar
  458. 458.
    Li, J., & Lam, M. (2015). Reproducibility project: cancer biology. Registered report: the microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Elife, 4, e06434.  https://doi.org/10.7554/eLife.06434.
  459. 459.
    Li, X., He, J., Shao, M., Cui, B., Peng, F., Li, J., et al. (2018). Downregulation of miR-218-5p promotes invasion of oral squamous cell carcinoma cells via activation of CD44-ROCK signaling. Biomedicine & Pharmacotherapy, 106, 646–654.  https://doi.org/10.1016/j.biopha.2018.06.151.Google Scholar
  460. 460.
    Al-Othman, N., Hammad, H., & Ahram, M. (2018). Dihydrotestosterone regulates expression of CD44 via miR-328-3p in triple-negative breast cancer cells. Gene, S0378-1119(18), 30755–30758.  https://doi.org/10.1016/j.gene.2018.06.094.Google Scholar
  461. 461.
    Wu, Z. S., Wu, Q., Wang, C. Q., Wang, X. N., Huang, J., Zhao, J. J., et al. (2011). miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer, 117, 2842–2852.  https://doi.org/10.1002/cncr.25860.Google Scholar
  462. 462.
    Takahashi, H., Ohkuchi, A., Kuwata, T., Usui, R., Baba, Y., Suzuki, H., et al. (2017). Endogenous and exogenous miR-520c-3p modulates CD44-mediated extravillous trophoblast invasion. Placenta, 50, 25–31.  https://doi.org/10.1016/j.placenta.2016.12.016.Google Scholar
  463. 463.
    Shen, W. W., Zeng, Z., Zhu, W. X., & Fu, G. H. (2013). MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl), 91(8), 989–1000.  https://doi.org/10.1007/s00109-013-1037-x.Google Scholar
  464. 464.
    Tsuji, S., Kawasaki, Y., Furukawa, S., Taniue, K., Hayashi, T., Okuno, M., et al. (2014). The miR-363-GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. Nature Communications, 5, 3150.  https://doi.org/10.1038/ncomms4150.Google Scholar
  465. 465.
    Zhou, M. K., Liu, X. J., Zhao, Z. G., & Cheng, Y. M. (2015). MicroRNA-100 functions as a tumor suppressor by inhibiting Lgr5 expression in colon cancer cells. Molecular Medicine Reports, 11(4), 2947–2952.  https://doi.org/10.3892/mmr.2014.3052.Google Scholar
  466. 466.
    Ostenfeld, M. S., Jensen, S. G., Jeppesen, D. K., Christensen, L. L., Thorsen, S. B., Stenvang, J., et al. (2016). miRNA profiling of circulating EpCAM(+) extracellular vesicles: promising biomarkers of colorectal cancer. J Extracell Vesicles, 5, 31488.  https://doi.org/10.3402/jev.v5.31488.Google Scholar
  467. 467.
    Ji, H., Chen, M., Greening, D. W., He, W., Rai, A., Zhang, W., et al. (2014). Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoS One, 9(10), e110314.  https://doi.org/10.1371/journal.pone.0110314.Google Scholar
  468. 468.
    Hu, Y., Wang, J., Qian, J., Kong, X., Tang, J., Wang, Y., et al. (2014). Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Research, 74(23), 6890–6902.  https://doi.org/10.1158/0008-5472.CAN-14-0686.Google Scholar
  469. 469.
    Wu, X., He, X., Li, S., Xu, X., Chen, X., & Zhu, H. (2016). Long non-coding RNA ucoo2kmd.1 regulates CD44-dependent cell growth by competing for miR-211-3p in colorectal cancer. PLoS One, 11(3), e0151287.  https://doi.org/10.1371/journal.pone.0151287.Google Scholar
  470. 470.
    Wang, R., Dong, H. X., Zeng, J., Pan, J., & Jin, X. Y. (2018). LncRNA DGCR5 contributes to CSC-like properties via modulating miR-330-5p/CD44 in NSCLC. Journal of Cellular Physiology, 233(9), 7447–7456.  https://doi.org/10.1002/jcp.26590.Google Scholar
  471. 471.
    Ji, J., Tang, J., Deng, L., Xie, Y., Jiang, R., Li, G., et al. (2015). LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway. Oncotarget, 6(40), 42813–42824.  https://doi.org/10.18632/oncotarget.5970. Google Scholar
  472. 472.
    Zhang, Z.Y., Lu, Y.X., Zhang, Z.Y., Chang, Y.Y., Zheng, L., Yuan, L., et al. (2016). Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget, 7(16), 22639–22649. doi: 10.18632/oncotarget.8141.Google Scholar
  473. 473.
    Liu, J., Yang, C., Gu, Y., Li, C., Zhang, H., Zhang, W., et al. (2018). Knockdown of the lncRNA SNHG8 inhibits cell growth in Epstein-Barr virus-associated gastric carcinoma. Cellular & Molecular Biology Letters, 23, 17.  https://doi.org/10.1186/s11658-018-0070-8.Google Scholar
  474. 474.
    Ren, H., Yang, X., Yang, Y., Zhang, X., Zhao, R., Wie, R., et al. (2017). Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma. Oncotarget, 9(4), 4851–4861.  https://doi.org/10.18632/oncotarget.23585.Google Scholar
  475. 475.
    Jing, N., Huang, T., Guo, H., Yang, J., Li, M., Chen, Z., et al. (2018). LncRNA CASC15 promotes colon cancer cell proliferation and metastasis by regulating the miR-4310/LGR5/Wnt/β-catenin signaling pathway. Molecular Medicine Reports, 18(2), 2269–2276.  https://doi.org/10.3892/mmr.2018.9191.Google Scholar
  476. 476.
    Song, Y. X., Sun, J. X., Zhao, J. H., Yang, Y. C., Shi, J. X., Wu, Z. H., et al. (2017). Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nature Communications, 8(1), 289.  https://doi.org/10.1038/s41467-017-00304-1.Google Scholar
  477. 477.
    Chen, T., Xue, H., Lin, R., & Huang, Z. (2017). MiR-34c and PlncRNA1 mediated the function of intestinal epithelial barrier by regulating tight junction proteins in inflammatory bowel disease. Biochemical and Biophysical Research Communications, 486(1), 6–13.  https://doi.org/10.1016/j.bbrc.2017.01.115.Google Scholar
  478. 478.
    Chen, M., Xu, R., Ji, H., Greening, D. W., Rai, A., Izumikawa, K., et al. (2016). Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Scientific Reports, 6, 38397.  https://doi.org/10.1038/srep38397.Google Scholar
  479. 479.
    Wang, F., Tian, X., Zhou, J., Wang, G., Yu, W., Li, Z., et al. (2018). A three-lncRNA signature for prognosis prediction of acute myeloid leukemia in patients. Molecular Medicine Reports, 18(2), 1473–1484.  https://doi.org/10.3892/mmr.2018.9139.Google Scholar
  480. 480.
    Xie, S., Ge, Q., Wang, X., Sun, X., & Kang, Y. (2018). Long non-coding RNA ZFAS1 sponges miR-484 to promote cell proliferation and invasion in colorectal cancer. Cell Cycle, 17(2), 154–161.  https://doi.org/10.1080/15384101.2017.1407895.Google Scholar
  481. 481.
    Li, N., Sun, Z. H., Fang, M., Xin, J. Y., & Wan, C. Y. (2017). Long non-coding RNA ZFAS1 sponges miR-486 to promote osteosarcoma cells progression and metastasis in vitro and vivo. Oncotarget, 8(61), 104160–104170.  https://doi.org/10.18632/oncotarget.22032.Google Scholar
  482. 482.
    Xu, W., He, L., Li, Y., Tan, Y., Zhang, F., & Xu, H. (2018). Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Bioscience, Biotechnology, and Biochemistry, 82(3), 456–465.  https://doi.org/10.1080/09168451.2018.1431518.Google Scholar
  483. 483.
    Yang, C. H., Zhang, X. Y., Zhou, L. N., Wan, Y., Song, L. L., Gu, W. L., et al. (2018). LncRNA SNHG8 participates in the development of endometrial carcinoma through regulating c-MET expression by miR-152. European Review for Medical and Pharmacological Sciences, 22(6), 1629–1637.  https://doi.org/10.26355/eurrev_201803_14698.Google Scholar
  484. 484.
    Chen, Z., Bu, N., Qiao, X., Zuo, Z., Shu, Y., Liu, Z., et al. (2018). Forkhead box M1 transcriptionally regulates the expression of long noncoding RNAs Snhg8 and Gm26917 to promote proliferation and survival of muscle satellite cells. Stem Cells.  https://doi.org/10.1002/stem.2824.
  485. 485.
    Wan, L., Kong, J., Tang, J., Wu, Y., Xu, E., Lai, M., et al. (2016). HOTAIRM1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. Journal of Cellular and Molecular Medicine, 20(11), 2036–2044.  https://doi.org/10.1111/jcmm.12892.Google Scholar
  486. 486.
    Chen, Z. H., Wang, W. T., Huang, W., Fang, K., Sun, Y. M., Liu, S. R., et al. (2017). The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death and Differentiation, 24(2), 212–224.  https://doi.org/10.1038/cdd.2016.111.Google Scholar
  487. 487.
    Marín-Béjar, O., Mas, A. M., González, J., Martinez, D., Athie, A., Morales, X., et al. (2017). The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biology, 18(1), 202.  https://doi.org/10.1186/s13059-017-1331-y.Google Scholar
  488. 488.
    Li, Y., Huang, S., Li, Y., Zhang, W., He, K., Zhao, M., et al. (2016). Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biology, 37(10), 14205–14215.  https://doi.org/10.1007/s13277-016-5254-0.Google Scholar
  489. 489.
    Jiao, F., Hu, H., Han, T., Yuan, C., Wang, L., Jin, Z., et al. (2015). Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. International Journal of Molecular Sciences, 16(4), 6677–6693.  https://doi.org/10.3390/ijms16046677.Google Scholar
  490. 490.
    Geng, H., Bu, H. F., Liu, F., Wu, L., Pfeifer, K., Chou, P. M., et al. (2018). In inflamed intestinal tissues and epithelial cells, interleukin 22 signaling increases expression of h19 long noncoding RNA, which promotes mucosal regeneration. Gastroenterology, 155(1), 144–155.  https://doi.org/10.1053/j.gastro.2018.03.058.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OncologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
  2. 2.Pancreas SectionUniversity Hospital of SurgeryHeidelbergGermany

Personalised recommendations