Advertisement

Cancer and Metastasis Reviews

, Volume 38, Issue 1–2, pp 189–203 | Cite as

Pro- and antitumor effects of mitochondrial reactive oxygen species

  • Valéry L. Payen
  • Luca X. Zampieri
  • Paolo E. Porporato
  • Pierre SonveauxEmail author
Article

Abstract

In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.

Keywords

Cancer Mitochondria Mitochondrial reactive oxygen species (mtROS) Antioxidants Pro-oxidants mitoQ 

Notes

Acknowledgements

Works at authors’ labs are supported by European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 642623 RADIATE and No. 722605 TRANSMIT, the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS), the Belgian Télévie and the Fondation Louvain (all to PS), and the Italian Ministry for University and Research (MIUR, Rita Levi-Montalcini program for young researchers 2014) to PEP. PS is a F.R.S.-FNRS Senior Research Associate. LXZ is a PhD Fellow of Marie Skłodowska-Curie grant No. 722605 TRANSMIT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gaude, E., & Frezza, C. (2014). Defects in mitochondrial metabolism and cancer. Cancer & Metabolism, 2, 10.  https://doi.org/10.1186/2049-3002-2-10.Google Scholar
  2. 2.
    Sabharwal, S. S., & Schumacker, P. T. (2014). Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nature Reviews. Cancer, 14(11), 709–721.  https://doi.org/10.1038/nrc3803.Google Scholar
  3. 3.
    Corbet, C., & Feron, O. (2017). Tumour acidosis: from the passenger to the driver's seat. Nature Reviews. Cancer, 17(10), 577–593.  https://doi.org/10.1038/nrc.2017.77.Google Scholar
  4. 4.
    Justus, C. R., Sanderlin, E. J., & Yang, L. V. (2015). Molecular connections between cancer cell metabolism and the tumor microenvironment. International Journal of Molecular Sciences, 16(5), 11055–11086.  https://doi.org/10.3390/ijms160511055.Google Scholar
  5. 5.
    Corbet, C., Pinto, A., Martherus, R., Santiago de Jesus, J. P., Polet, F., & Feron, O. (2016). Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metabolism, 24(2), 311–323.  https://doi.org/10.1016/j.cmet.2016.07.003.Google Scholar
  6. 6.
    Riemann, A., Schneider, B., Gundel, D., Stock, C., Gekle, M., & Thews, O. (2016). Acidosis promotes metastasis formation by enhancing tumor cell motility. Advances in Experimental Medicine and Biology, 876, 215–220.  https://doi.org/10.1007/978-1-4939-3023-4_27.Google Scholar
  7. 7.
    Gupta, S. C., Singh, R., Pochampally, R., Watabe, K., & Mo, Y. Y. (2014). Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-kappaB pathway. Oncotarget, 5(23), 12070–12082.  https://doi.org/10.18632/oncotarget.2514.Google Scholar
  8. 8.
    Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417(1), 1–13.  https://doi.org/10.1042/bj20081386.Google Scholar
  9. 9.
    Sena, L. A., & Chandel, N. S. (2012). Physiological roles of mitochondrial reactive oxygen species. Molecular Cell, 48(2), 158–167.  https://doi.org/10.1016/j.molcel.2012.09.025.Google Scholar
  10. 10.
    Muller, F. L., Liu, Y., & Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. The Journal of Biological Chemistry, 279(47), 49064–49073.  https://doi.org/10.1074/jbc.M407715200.Google Scholar
  11. 11.
    Wellen, K. E., & Thompson, C. B. (2010). Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular Cell, 40(2), 323–332.  https://doi.org/10.1016/j.molcel.2010.10.004.Google Scholar
  12. 12.
    Khacho, M., Tarabay, M., Patten, D., Khacho, P., MacLaurin, J. G., Guadagno, J., et al. (2014). Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Communications, 5, 3550.  https://doi.org/10.1038/ncomms4550.Google Scholar
  13. 13.
    Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., et al. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 1(6), 401–408.  https://doi.org/10.1016/j.cmet.2005.05.001.Google Scholar
  14. 14.
    Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. The Journal of Biological Chemistry, 275(33), 25130–25138.  https://doi.org/10.1074/jbc.M001914200.Google Scholar
  15. 15.
    Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American Journal of Physiology, 271(5 Pt 1), C1424–C1437.  https://doi.org/10.1152/ajpcell.1996.271.5.C1424.Google Scholar
  16. 16.
    Winterbourn, C. C., & Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biology & Medicine, 27(3–4), 322–328.Google Scholar
  17. 17.
    Quinlan, C. L., Goncalves, R. L., Hey-Mogensen, M., Yadava, N., Bunik, V. I., & Brand, M. D. (2014). The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. The Journal of Biological Chemistry, 289(12), 8312–8325.  https://doi.org/10.1074/jbc.M113.545301.Google Scholar
  18. 18.
    Goncalves, R. L., Bunik, V. I., & Brand, M. D. (2016). Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radical Biology & Medicine, 91, 247–255.  https://doi.org/10.1016/j.freeradbiomed.2015.12.020.Google Scholar
  19. 19.
    Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., & Fernandez-Checa, J. C. (2009). Mitochondrial glutathione, a key survival antioxidant. Antioxidants & Redox Signaling, 11(11), 2685–2700.  https://doi.org/10.1089/ars.2009.2695.Google Scholar
  20. 20.
    Chung, W. J., Lyons, S. A., Nelson, G. M., Hamza, H., Gladson, C. L., Gillespie, G. Y., et al. (2005). Inhibition of cystine uptake disrupts the growth of primary brain tumors. The Journal of Neuroscience, 25(31), 7101–7110.  https://doi.org/10.1523/JNEUROSCI.5258-04.2005.Google Scholar
  21. 21.
    Zhang, W., Trachootham, D., Liu, J., Chen, G., Pelicano, H., Garcia-Prieto, C., et al. (2012). Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biology, 14(3), 276–286.  https://doi.org/10.1038/ncb2432.Google Scholar
  22. 22.
    Cramer, S. L., Saha, A., Liu, J., Tadi, S., Tiziani, S., Yan, W., et al. (2017). Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nature Medicine, 23(1), 120–127.  https://doi.org/10.1038/nm.4232.Google Scholar
  23. 23.
    Maddocks, O. D., Berkers, C. R., Mason, S. M., Zheng, L., Blyth, K., Gottlieb, E., et al. (2013). Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 493(7433), 542–546.  https://doi.org/10.1038/nature11743.Google Scholar
  24. 24.
    Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426.  https://doi.org/10.1146/annurev-pharmtox-011112-140320.Google Scholar
  25. 25.
    Szatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Research, 51(3), 794–798.Google Scholar
  26. 26.
    Assi, M., & Rebillard, A. (2016). The Janus-faced role of antioxidants in cancer cachexia: new insights on the established concepts. Oxidative Medicine and Cellular Longevity, 2016, 9579868.  https://doi.org/10.1155/2016/9579868.Google Scholar
  27. 27.
    Govindarajan, B., Sligh, J. E., Vincent, B. J., Li, M., Canter, J. A., Nickoloff, B. J., et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. The Journal of Clinical Investigation, 117(3), 719–729.  https://doi.org/10.1172/jci30102.Google Scholar
  28. 28.
    Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.  https://doi.org/10.1038/sj.onc.1209409.Google Scholar
  29. 29.
    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123–127.  https://doi.org/10.1038/nature03688.Google Scholar
  30. 30.
    Girnun, G. D. (2012). The diverse role of the PPARgamma coactivator 1 family of transcriptional coactivators in cancer. Seminars in Cell & Developmental Biology, 23(4), 381–388.  https://doi.org/10.1016/j.semcdb.2012.01.007.Google Scholar
  31. 31.
    LeBleu, V. S., O'Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003, 1001-1015.  https://doi.org/10.1038/ncb3039.Google Scholar
  32. 32.
    Chen, E. I., Hewel, J., Krueger, J. S., Tiraby, C., Weber, M. R., Kralli, A., et al. (2007). Adaptation of energy metabolism in breast cancer brain metastases. Cancer Research, 67(4), 1472–1486.  https://doi.org/10.1158/0008-5472.CAN-06-3137.Google Scholar
  33. 33.
    Torrano, V., Valcarcel-Jimenez, L., Cortazar, A. R., Liu, X., Urosevic, J., Castillo-Martin, M., et al. (2016). The metabolic co-regulator PGC1alpha suppresses prostate cancer metastasis. Nature Cell Biology, 18(6), 645–656.  https://doi.org/10.1038/ncb3357.Google Scholar
  34. 34.
    Luo, C., Lim, J. H., Lee, Y., Granter, S. R., Thomas, A., Vazquez, F., et al. (2016). A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis. Nature, 537(7620), 422–426.  https://doi.org/10.1038/nature19347.Google Scholar
  35. 35.
    St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127(2), 397–408.  https://doi.org/10.1016/j.cell.2006.09.024.Google Scholar
  36. 36.
    Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331.  https://doi.org/10.1016/j.cell.2012.10.050.Google Scholar
  37. 37.
    Esparza-Molto, P. B., & Cuezva, J. M. (2018). The role of mitochondrial H(+)-ATP synthase in cancer. Frontiers in Oncology, 8, 53.  https://doi.org/10.3389/fonc.2018.00053.Google Scholar
  38. 38.
    Santacatterina, F., Sanchez-Cenizo, L., Formentini, L., Mobasher, M. A., Casas, E., Rueda, C. B., et al. (2016). Down-regulation of oxidative phosphorylation in the liver by expression of the ATPase inhibitory factor 1 induces a tumor-promoter metabolic state. Oncotarget, 7(1), 490–508.  https://doi.org/10.18632/oncotarget.6357.Google Scholar
  39. 39.
    Alexeyev, M., Shokolenko, I., Wilson, G., & LeDoux, S. (2013). The maintenance of mitochondrial DNA integrity—critical analysis and update. Cold Spring Harbor Perspectives in Biology, 5(5), a012641.  https://doi.org/10.1101/cshperspect.a012641.Google Scholar
  40. 40.
    Canter, J. A., Kallianpur, A. R., Parl, F. F., & Millikan, R. C. (2005). Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Research, 65(17), 8028–8033.  https://doi.org/10.1158/0008-5472.Can-05-1428.Google Scholar
  41. 41.
    Darvishi, K., Sharma, S., Bhat, A. K., Rai, E., & Bamezai, R. N. (2007). Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Letters, 249(2), 249–255.  https://doi.org/10.1016/j.canlet.2006.09.005.Google Scholar
  42. 42.
    Ebner, S., Lang, R., Mueller, E. E., Eder, W., Oeller, M., Moser, A., et al. (2011). Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians. PLoS One, 6(12), e27192.  https://doi.org/10.1371/journal.pone.0027192.Google Scholar
  43. 43.
    Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J. K., Markowitz, S. D., et al. (1998). Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genetics, 20(3), 291–293.  https://doi.org/10.1038/3108.Google Scholar
  44. 44.
    Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., et al. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320(5876), 661–664.  https://doi.org/10.1126/science.1156906.Google Scholar
  45. 45.
    Ishikawa, K., Hashizume, O., Koshikawa, N., Fukuda, S., Nakada, K., Takenaga, K., et al. (2008). Enhanced glycolysis induced by mtDNA mutations does not regulate metastasis. FEBS Letters, 582(23–24), 3525–3530.  https://doi.org/10.1016/j.febslet.2008.09.024.Google Scholar
  46. 46.
    Petros, J. A., Baumann, A. K., Ruiz-Pesini, E., Amin, M. B., Sun, C. Q., Hall, J., et al. (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 719–724.  https://doi.org/10.1073/pnas.0408894102.Google Scholar
  47. 47.
    Singh, R. K., Srivastava, A., Kalaiarasan, P., Manvati, S., Chopra, R., & Bamezai, R. N. (2014). mtDNA germ line variation mediated ROS generates retrograde signaling and induces pro-cancerous metabolic features. Science Reports, 4, 6571.  https://doi.org/10.1038/srep06571.Google Scholar
  48. 48.
    Dasgupta, S., Hoque, M. O., Upadhyay, S., & Sidransky, D. (2008). Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Research, 68(3), 700–706.  https://doi.org/10.1158/0008-5472.Can-07-5532.Google Scholar
  49. 49.
    Morais, R., Zinkewich-Peotti, K., Parent, M., Wang, H., Babai, F., & Zollinger, M. (1994). Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer Research, 54(14), 3889–3896.Google Scholar
  50. 50.
    Cavalli, L. R., Varella-Garcia, M., & Liang, B. C. (1997). Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth & Differentiation, 8(11), 1189–1198.Google Scholar
  51. 51.
    Gasparre, G., Hervouet, E., de Laplanche, E., Demont, J., Pennisi, L. F., Colombel, M., et al. (2008). Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Human Molecular Genetics, 17(7), 986–995.  https://doi.org/10.1093/hmg/ddm371.Google Scholar
  52. 52.
    Gasparre, G., Romeo, G., Rugolo, M., & Porcelli, A. M. (2011). Learning from oncocytic tumors: why choose inefficient mitochondria? Biochimica et Biophysica Acta, 1807(6), 633–642.  https://doi.org/10.1016/j.bbabio.2010.08.006.Google Scholar
  53. 53.
    Mayr, J. A., Meierhofer, D., Zimmermann, F., Feichtinger, R., Kogler, C., Ratschek, M., et al. (2008). Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clinical Cancer Research, 14(8), 2270–2275.  https://doi.org/10.1158/1078-0432.Ccr-07-4131.Google Scholar
  54. 54.
    Tallini, G. (1998). Oncocytic tumours. Virchows Archiv, 433(1), 5–12.Google Scholar
  55. 55.
    Gasparre, G., Kurelac, I., Capristo, M., Iommarini, L., Ghelli, A., Ceccarelli, C., et al. (2011). A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Research, 71(19), 6220–6229.  https://doi.org/10.1158/0008-5472.Can-11-1042.Google Scholar
  56. 56.
    Oliva, C. R., Nozell, S. E., Diers, A., McClugage, S. G., 3rd, Sarkaria, J. N., Markert, J. M., et al. (2010). Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. The Journal of Biological Chemistry, 285(51), 39759–39767.  https://doi.org/10.1074/jbc.M110.147504.Google Scholar
  57. 57.
    Griguer, C. E., Cantor, A. B., Fathallah-Shaykh, H. M., Gillespie, G. Y., Gordon, A. S., Markert, J. M., et al. (2013). Prognostic relevance of cytochrome C oxidase in primary glioblastoma multiforme. PLoS One, 8(4), e61035.  https://doi.org/10.1371/journal.pone.0061035.Google Scholar
  58. 58.
    Oliva, C. R., Moellering, D. R., Gillespie, G. Y., & Griguer, C. E. (2011). Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One, 6(9), e24665.  https://doi.org/10.1371/journal.pone.0024665.Google Scholar
  59. 59.
    Bell, E. L., Klimova, T. A., Eisenbart, J., Moraes, C. T., Murphy, M. P., Budinger, G. R., et al. (2007). The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. The Journal of Cell Biology, 177(6), 1029–1036.  https://doi.org/10.1083/jcb.200609074.Google Scholar
  60. 60.
    Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., et al. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 1(6), 409–414.  https://doi.org/10.1016/j.cmet.2005.05.002.Google Scholar
  61. 61.
    Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., et al. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism, 1(6), 393–399.  https://doi.org/10.1016/j.cmet.2005.05.003.Google Scholar
  62. 62.
    De Saedeleer, C. J., Porporato, P. E., Copetti, T., Perez-Escuredo, J., Payen, V. L., Brisson, L., et al. (2014). Glucose deprivation increases monocarboxylate transporter 1 (MCT1) expression and MCT1-dependent tumor cell migration. Oncogene, 33(31), 4060–4068.  https://doi.org/10.1038/onc.2013.454.Google Scholar
  63. 63.
    Graham, N. A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., Vivanco, I., et al. (2012). Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 8, 589.  https://doi.org/10.1038/msb.2012.20.Google Scholar
  64. 64.
    Nazarewicz, R. R., Dikalova, A. E., Bikineyeva, A., & Dikalov, S. I. (2013). Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. American Journal of Physiology. Heart and Circulatory Physiology, 305(8), H1131–H1140.  https://doi.org/10.1152/ajpheart.00063.2013.Google Scholar
  65. 65.
    Dikalova, A. E., Bikineyeva, A. T., Budzyn, K., Nazarewicz, R. R., McCann, L., Lewis, W., et al. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. Circulation Research, 107(1), 106–116.  https://doi.org/10.1161/circresaha.109.214601.Google Scholar
  66. 66.
    Molognoni, F., de Melo, F. H., da Silva, C. T., & Jasiulionis, M. G. (2013). Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation. PLoS One, 8(12), e81937.  https://doi.org/10.1371/journal.pone.0081937.Google Scholar
  67. 67.
    Imhoff, B. R., & Hansen, J. M. (2009). Extracellular redox status regulates Nrf2 activation through mitochondrial reactive oxygen species. The Biochemical Journal, 424(3), 491–500.  https://doi.org/10.1042/bj20091286.Google Scholar
  68. 68.
    Korshunov, S. S., Skulachev, V. P., & Starkov, A. A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters, 416(1), 15–18.Google Scholar
  69. 69.
    Skulachev, V. P. (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta, 1363(2), 100–124.Google Scholar
  70. 70.
    Checchetto, V., Azzolini, M., Peruzzo, R., Capitanio, P., & Leanza, L. (2018). Mitochondrial potassium channels in cell death. Biochemical and Biophysical Research Communications, 500(1), 51–58.  https://doi.org/10.1016/j.bbrc.2017.06.095.Google Scholar
  71. 71.
    Malinska, D., Mirandola, S. R., & Kunz, W. S. (2010). Mitochondrial potassium channels and reactive oxygen species. FEBS Letters, 584(10), 2043–2048.  https://doi.org/10.1016/j.febslet.2010.01.013.Google Scholar
  72. 72.
    Lluis, J. M., Buricchi, F., Chiarugi, P., Morales, A., & Fernandez-Checa, J. C. (2007). Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Research, 67(15), 7368–7377.  https://doi.org/10.1158/0008-5472.Can-07-0515.Google Scholar
  73. 73.
    DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475(7354), 106–109.  https://doi.org/10.1038/nature10189.Google Scholar
  74. 74.
    Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M., et al. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8788–8793.  https://doi.org/10.1073/pnas.1003428107.Google Scholar
  75. 75.
    Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334(6060), 1278–1283.  https://doi.org/10.1126/science.1211485.Google Scholar
  76. 76.
    Kong, H., & Chandel, N. S. (2018). Regulation of redox balance in cancer and T cells. The Journal of Biological Chemistry, 293(20), 7499–7507.  https://doi.org/10.1074/jbc.TM117.000257.Google Scholar
  77. 77.
    Di Marcantonio, D., Martinez, E., Sidoli, S., Vadaketh, J., Nieborowska-Skorska, M., Gupta, A., et al. (2018). Protein kinase C epsilon is a key regulator of mitochondrial redox homeostasis in acute myeloid leukemia. Clinical Cancer Research, 24(3), 608–618.  https://doi.org/10.1158/1078-0432.Ccr-17-2684.Google Scholar
  78. 78.
    Karnati, S., Luers, G., Pfreimer, S., & Baumgart-Vogt, E. (2013). Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochemistry and Cell Biology, 140(2), 105–117.  https://doi.org/10.1007/s00418-013-1099-4.Google Scholar
  79. 79.
    Sreevalsan, S., & Safe, S. (2013). Reactive oxygen species and colorectal cancer. Current Colorectal Cancer Reports, 9(4), 350–357.  https://doi.org/10.1007/s11888-013-0190-5.Google Scholar
  80. 80.
    Assi, M. (2017). The differential role of reactive oxygen species in early and late stages of cancer. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 313(6), R646–r653.  https://doi.org/10.1152/ajpregu.00247.2017.Google Scholar
  81. 81.
    Chen, P., Luo, X., Nie, P., Wu, B., Xu, W., Shi, X., et al. (2017). CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk. Free Radical Biology & Medicine, 104, 280–297.  https://doi.org/10.1016/j.freeradbiomed.2017.01.033.Google Scholar
  82. 82.
    Kang, K. A., Zhang, R., Kim, G. Y., Bae, S. C., & Hyun, J. W. (2012). Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biology, 33(2), 403–412.  https://doi.org/10.1007/s13277-012-0322-6.Google Scholar
  83. 83.
    Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2002). Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1259–1263.  https://doi.org/10.1073/pnas.241655498.Google Scholar
  84. 84.
    Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., et al. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. The Journal of Experimental Medicine, 182(2), 367–377.Google Scholar
  85. 85.
    Thorpe, G. W., Reodica, M., Davies, M. J., Heeren, G., Jarolim, S., Pillay, B., et al. (2013). Superoxide radicals have a protective role during H2O2 stress. Molecular Biology of the Cell, 24(18), 2876–2884.  https://doi.org/10.1091/mbc.E13-01-0052.Google Scholar
  86. 86.
    De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen, J., et al. (2014). Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2501–E2509.  https://doi.org/10.1073/pnas.1321776111.Google Scholar
  87. 87.
    Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlow, D., et al. (2012). Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metabolism, 15(4), 451–465.  https://doi.org/10.1016/j.cmet.2012.02.013.Google Scholar
  88. 88.
    Dewaele, M., Maes, H., & Agostinis, P. (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy, 6(7), 838–854.Google Scholar
  89. 89.
    White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews. Cancer, 12(6), 401–410.  https://doi.org/10.1038/nrc3262.Google Scholar
  90. 90.
    Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., & Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 11715–11720.Google Scholar
  91. 91.
    Chang, J., Jung, H. J., Jeong, S. H., Kim, H. K., Han, J., & Kwon, H. J. (2014). A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species. Biochemical and Biophysical Research Communications, 455(3–4), 290–297.  https://doi.org/10.1016/j.bbrc.2014.11.005.Google Scholar
  92. 92.
    Masson, N., Singleton, R. S., Sekirnik, R., Trudgian, D. C., Ambrose, L. J., Miranda, M. X., et al. (2012). The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Reports, 13(3), 251–257.  https://doi.org/10.1038/embor.2012.9.Google Scholar
  93. 93.
    Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1), 111–122.  https://doi.org/10.1016/j.cell.2007.01.047.Google Scholar
  94. 94.
    Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3(3), 177–185.  https://doi.org/10.1016/j.cmet.2006.02.002.Google Scholar
  95. 95.
    Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. The Journal of Biological Chemistry, 269(38), 23757–23763.Google Scholar
  96. 96.
    Jurica, M. S., Mesecar, A., Heath, P. J., Shi, W., Nowak, T., & Stoddard, B. L. (1998). The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure, 6(2), 195–210.Google Scholar
  97. 97.
    Dombrauckas, J. D., Santarsiero, B. D., & Mesecar, A. D. (2005). Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 44(27), 9417–9429.  https://doi.org/10.1021/bi0474923. Google Scholar
  98. 98.
    Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouyssegur, J., et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology, 29(10), 2570–2581.  https://doi.org/10.1128/mcb.00166-09.Google Scholar
  99. 99.
    Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. The Journal of Biological Chemistry, 283(16), 10892–10903.  https://doi.org/10.1074/jbc.M800102200.Google Scholar
  100. 100.
    Keith, B., Johnson, R. S., & Simon, M. C. (2011). HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Reviews. Cancer, 12(1), 9–22.  https://doi.org/10.1038/nrc3183.Google Scholar
  101. 101.
    Wen, J., Wang, Y., Gao, C., Zhang, G., You, Q., Zhang, W., et al. (2018). Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS-HIF-1alpha-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene, 37(26), 3549–3561.  https://doi.org/10.1038/s41388-018-0208-1.Google Scholar
  102. 102.
    Zhao, X.-L., & Yu, C.-Z. (2018). Vosaroxin induces mitochondrial dysfunction and apoptosis in cervical cancer HeLa cells: involvement of AMPK/Sirt3/HIF-1 pathway. Chemico-Biological Interactions, 290, 57–63.  https://doi.org/10.1016/j.cbi.2018.05.011.Google Scholar
  103. 103.
    Moeller, B. J., Richardson, R. A., & Dewhirst, M. W. (2007). Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Reviews, 26(2), 241–248.  https://doi.org/10.1007/s10555-007-9056-0.Google Scholar
  104. 104.
    Rohwer, N., & Cramer, T. (2011). Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resistance Updates, 14(3), 191–201.  https://doi.org/10.1016/j.drup.2011.03.001.Google Scholar
  105. 105.
    Semenza, G. L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214.  https://doi.org/10.1016/j.tips.2012.01.005.Google Scholar
  106. 106.
    Yu, T., Tang, B., & Sun, X. (2017). Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Medical Journal, 58(3), 489–496.  https://doi.org/10.3349/ymj.2017.58.3.489.Google Scholar
  107. 107.
    Fiaschi, T., Marini, A., Giannoni, E., Taddei, M. L., Gandellini, P., De Donatis, A., et al. (2012). Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Research, 72(19), 5130–5140.  https://doi.org/10.1158/0008-5472.Can-12-1949.Google Scholar
  108. 108.
    Sanita, P., Capulli, M., Teti, A., Galatioto, G. P., Vicentini, C., Chiarugi, P., et al. (2014). Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer, 14, 154.  https://doi.org/10.1186/1471-2407-14-154.Google Scholar
  109. 109.
    Morselli, E., Galluzzi, L., Kepp, O., Vicencio, J. M., Criollo, A., Maiuri, M. C., et al. (2009). Anti- and pro-tumor functions of autophagy. Biochimica et Biophysica Acta, 1793(9), 1524–1532.  https://doi.org/10.1016/j.bbamcr.2009.01.006.Google Scholar
  110. 110.
    Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., & Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal, 26(7), 1749–1760.  https://doi.org/10.1038/sj.emboj.7601623.Google Scholar
  111. 111.
    Poillet-Perez, L., Despouy, G., Delage-Mourroux, R., & Boyer-Guittaut, M. (2015). Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biology, 4, 184–192.  https://doi.org/10.1016/j.redox.2014.12.003.Google Scholar
  112. 112.
    Tan, A. S., Baty, J. W., Dong, L. F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism, 21(1), 81–94.  https://doi.org/10.1016/j.cmet.2014.12.003.Google Scholar
  113. 113.
    He, X., Zhou, A., Lu, H., Chen, Y., Huang, G., Yue, X., et al. (2013). Suppression of mitochondrial complex I influences cell metastatic properties. PLoS One, 8(4), e61677.  https://doi.org/10.1371/journal.pone.0061677.Google Scholar
  114. 114.
    Comito, G., Calvani, M., Giannoni, E., Bianchini, F., Calorini, L., Torre, E., et al. (2011). HIF-1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radical Biology & Medicine, 51(4), 893–904.  https://doi.org/10.1016/j.freeradbiomed.2011.05.042.Google Scholar
  115. 115.
    Arnold, R. S., Sun, C. Q., Richards, J. C., Grigoriev, G., Coleman, I. M., Nelson, P. S., et al. (2009). Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69(1), 1–11.  https://doi.org/10.1002/pros.20854.Google Scholar
  116. 116.
    Porporato, P. E., Payen, V. L., Perez-Escuredo, J., De Saedeleer, C. J., Danhier, P., Copetti, T., et al. (2014). A mitochondrial switch promotes tumor metastasis. Cell Reports, 8(3), 754–766.  https://doi.org/10.1016/j.celrep.2014.06.043.Google Scholar
  117. 117.
    Riemann, A., Schneider, B., Gundel, D., Stock, C., Thews, O., & Gekle, M. (2014). Acidic priming enhances metastatic potential of cancer cells. Pflügers Archiv, 466(11), 2127–2138.  https://doi.org/10.1007/s00424-014-1458-6.Google Scholar
  118. 118.
    Paoli, P., Giannoni, E., & Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta, 1833(12), 3481–3498.  https://doi.org/10.1016/j.bbamcr.2013.06.026.Google Scholar
  119. 119.
    Piskounova, E., Agathocleous, M., Murphy, M. M., Hu, Z., Huddlestun, S. E., Zhao, Z., et al. (2015). Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 527(7577), 186–191.  https://doi.org/10.1038/nature15726.Google Scholar
  120. 120.
    Kamarajugadda, S., Cai, Q., Chen, H., Nayak, S., Zhu, J., He, M., et al. (2013). Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death & Disease, 4, e504.  https://doi.org/10.1038/cddis.2013.20.Google Scholar
  121. 121.
    Lu, X., Bennet, B., Mu, E., Rabinowitz, J., & Kang, Y. (2010). Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. The Journal of Biological Chemistry, 285(13), 9317–9321.  https://doi.org/10.1074/jbc.C110.104448.Google Scholar
  122. 122.
    Le Gal, K., Ibrahim, M. X., Wiel, C., Sayin, V. I., Akula, M. K., Karlsson, C., et al. (2015). Antioxidants can increase melanoma metastasis in mice. Science Translational Medicine, 7(308), 308re308.  https://doi.org/10.1126/scitranslmed.aad3740.Google Scholar
  123. 123.
    Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., & Bergo, M. O. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra215.  https://doi.org/10.1126/scitranslmed.3007653.Google Scholar
  124. 124.
    Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., et al. (2007). HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12(3), 230–238.  https://doi.org/10.1016/j.ccr.2007.08.004.Google Scholar
  125. 125.
    Klein, E. A., Thompson, I. M., Jr., Tangen, C. M., Crowley, J. J., Lucia, M. S., Goodman, P. J., et al. (2011). Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 306(14), 1549–1556.  https://doi.org/10.1001/jama.2011.1437.Google Scholar
  126. 126.
    Hercberg, S., Galan, P., Preziosi, P., Bertrais, S., Mennen, L., Malvy, D., et al. (2004). The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Archives of Internal Medicine, 164(21), 2335–2342.  https://doi.org/10.1001/archinte.164.21.2335.Google Scholar
  127. 127.
    Jacobs, C., Hutton, B., Ng, T., Shorr, R., & Clemons, M. (2015). Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. Oncologist, 20(2), 210–223.  https://doi.org/10.1634/theoncologist.2014-0381.Google Scholar
  128. 128.
    Bairati, I., Meyer, F., Gelinas, M., Fortin, A., Nabid, A., Brochet, F., et al. (2005). Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. Journal of Clinical Oncology, 23(24), 5805–5813.  https://doi.org/10.1200/jco.2005.05.514.Google Scholar
  129. 129.
    Lawenda, B. D., Kelly, K. M., Ladas, E. J., Sagar, S. M., Vickers, A., & Blumberg, J. B. (2008). Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? Journal of the National Cancer Institute, 100(11), 773–783.  https://doi.org/10.1093/jnci/djn148.Google Scholar
  130. 130.
    Ozben, T. (2015). Antioxidant supplementation on cancer risk and during cancer therapy: an update. Current Topics in Medicinal Chemistry, 15(2), 170–178.Google Scholar
  131. 131.
    Bonner, M. Y., & Arbiser, J. L. (2014). The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Medicinal Chemistry, 6(12), 1413–1422.  https://doi.org/10.4155/fmc.14.86.Google Scholar
  132. 132.
    Jin, H., Kanthasamy, A., Ghosh, A., Anantharam, V., Kalyanaraman, B., & Kanthasamy, A. G. (2014). Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochimica et Biophysica Acta, 1842(8), 1282–1294.  https://doi.org/10.1016/j.bbadis.2013.09.007.Google Scholar
  133. 133.
    Chandel, N. S., & Tuveson, D. A. (2014). The promise and perils of antioxidants for cancer patients. The New England Journal of Medicine, 371(2), 177–178.  https://doi.org/10.1056/NEJMcibr1405701.Google Scholar
  134. 134.
    Nazarewicz, R. R., Dikalova, A., Bikineyeva, A., Ivanov, S., Kirilyuk, I. A., Grigor'ev, I. A., et al. (2013). Does scavenging of mitochondrial superoxide attenuate cancer prosurvival signaling pathways? Antioxidants & Redox Signaling, 19(4), 344–349.  https://doi.org/10.1089/ars.2013.5185.Google Scholar
  135. 135.
    Cheriyath, V., Kaur, J., Davenport, A., Khalel, A., Chowdhury, N., & Gaddipati, L. (2018). G1P3 (IFI6), a mitochondrial localised antiapoptotic protein, promotes metastatic potential of breast cancer cells through mtROS. British Journal of Cancer, 119(1), 52–64.  https://doi.org/10.1038/s41416-018-0137-3.Google Scholar
  136. 136.
    Wang, B., Fu, J., Yu, T., Xu, A., Qin, W., Yang, Z., et al. (2017). Contradictory effects of mitochondria- and non-mitochondria-targeted antioxidants on hepatocarcinogenesis by altering DNA repair in mice. Hepatology.  https://doi.org/10.1002/hep.29518.
  137. 137.
    Titova, E., Shagieva, G., Ivanova, O., Domnina, L., Domninskaya, M., Strelkova, O., et al. (2018). Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth. Cell Cycle, 17(14), 1797–1811.  https://doi.org/10.1080/15384101.2018.1496748.Google Scholar
  138. 138.
    Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122.  https://doi.org/10.1016/j.cell.2014.07.013.Google Scholar
  139. 139.
    Verrax, J., Cadrobbi, J., Marques, C., Taper, H., Habraken, Y., Piette, J., et al. (2004). Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis, 9(2), 223–233.  https://doi.org/10.1023/B:APPT.0000018804.26026.1a.Google Scholar
  140. 140.
    Verrax, J., Delvaux, M., Beghein, N., Taper, H., Gallez, B., & Buc Calderon, P. (2005). Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Free Radical Research, 39(6), 649–657.  https://doi.org/10.1080/10715760500097906.Google Scholar
  141. 141.
    Verrax, J., Stockis, J., Tison, A., Taper, H. S., & Calderon, P. B. (2006). Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochemical Pharmacology, 72(6), 671–680.  https://doi.org/10.1016/j.bcp.2006.05.025.Google Scholar
  142. 142.
    Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell, 10(3), 241–252.  https://doi.org/10.1016/j.ccr.2006.08.009.Google Scholar
  143. 143.
    Stacpoole, P. W. (2017). Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. Journal of the National Cancer Institute, 109(11).  https://doi.org/10.1093/jnci/djx071.
  144. 144.
    Shaw, A. T., Winslow, M. M., Magendantz, M., Ouyang, C., Dowdle, J., Subramanian, A., et al. (2011). Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8773–8778.  https://doi.org/10.1073/pnas.1105941108.Google Scholar
  145. 145.
    Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., et al. (2007). RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146), 864–868.  https://doi.org/10.1038/nature05859. Google Scholar
  146. 146.
    Hou, X. S., Wang, H. S., Mugaka, B. P., Yang, G. J., & Ding, Y. (2018). Mitochondria: promising organelle targets for cancer diagnosis and treatment. Biomaterials Science, 6(11), 2786–2797.  https://doi.org/10.1039/c8bm00673c.Google Scholar
  147. 147.
    Basit, F., van Oppen, L. M., Schockel, L., Bossenbroek, H. M., van Emst-de Vries, S. E., Hermeling, J. C., et al. (2017). Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death & Disease, 8(3), e2716.  https://doi.org/10.1038/cddis.2017.133.Google Scholar
  148. 148.
    Hammerova, J., Uldrijan, S., Taborska, E., Vaculova, A. H., & Slaninova, I. (2012). Necroptosis modulated by autophagy is a predominant form of melanoma cell death induced by sanguilutine. Biological Chemistry, 393(7), 647–658.  https://doi.org/10.1515/hsz-2011-0279.Google Scholar
  149. 149.
    Sonkusre, P., & Cameotra, S. S. (2017). Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. Journal of Nanobiotechnology, 15(1), 43.  https://doi.org/10.1186/s12951-017-0276-3. Google Scholar
  150. 150.
    Jung, H. S., Lee, J. H., Kim, K., Koo, S., Verwilst, P., Sessler, J. L., et al. (2017). A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. Journal of the American Chemical Society, 139(29), 9972–9978.  https://doi.org/10.1021/jacs.7b04263. Google Scholar
  151. 151.
    Jung, H. S., Han, J., Lee, J. H., Lee, J. H., Choi, J. M., Kweon, H. S., et al. (2015). Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. Journal of the American Chemical Society, 137(8), 3017–3023.  https://doi.org/10.1021/ja5122809. Google Scholar
  152. 152.
    Chakrabortty, S., Agrawalla, B. K., Stumper, A., Vegi, N. M., Fischer, S., Reichardt, C., et al. (2017). Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. Journal of the American Chemical Society, 139(6), 2512–2519.  https://doi.org/10.1021/jacs.6b13399.Google Scholar
  153. 153.
    Guo, R., Peng, H., Tian, Y., Shen, S., & Yang, W. (2016). Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small, 12(33), 4541–4552.  https://doi.org/10.1002/smll.201601094.Google Scholar
  154. 154.
    Stolik, S., Delgado, J. A., Perez, A., & Anasagasti, L. (2000). Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. Journal of Photochemistry and Photobiology. B, 57(2–3), 90–93.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Valéry L. Payen
    • 1
    • 2
    • 3
  • Luca X. Zampieri
    • 1
  • Paolo E. Porporato
    • 4
  • Pierre Sonveaux
    • 1
    Email author
  1. 1.Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC)Université catholique de Louvain (UCLouvain)BrusselsBelgium
  2. 2.Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC)UCLouvainBrusselsBelgium
  3. 3.Louvain Drug Research InstituteUCLouvainBrusselsBelgium
  4. 4.Department of Molecular Biotechnology and Health Science, Molecular Biotechnology CentreUniversity of TorinoTorinoItaly

Personalised recommendations