Advertisement

Cancer and Metastasis Reviews

, Volume 38, Issue 1–2, pp 51–64 | Cite as

Molecular and functional imaging insights into the role of hypoxia in cancer aggression

  • Samata Kakkad
  • Balaji Krishnamachary
  • Desmond Jacob
  • Jesus Pacheco-Torres
  • Eibhlin Goggins
  • Santosh Kumar Bharti
  • Marie-France Penet
  • Zaver M. BhujwallaEmail author
Article

Abstract

Hypoxia in cancers has evoked significant interest since 1955 when Thomlinson and Gray postulated the presence of hypoxia in human lung cancers, based on the observation of necrosis occurring at the diffusion limit of oxygen from the nearest blood vessel, and identified the implication of these observations for radiation therapy. Coupled with discoveries in 1953 by Gray and others that anoxic cells were resistant to radiation damage, these observations have led to an entire field of research focused on exploiting oxygenation and hypoxia to improve the outcome of radiation therapy. Almost 65 years later, tumor heterogeneity of nearly every parameter measured including tumor oxygenation, and the dynamic landscape of cancers and their microenvironments are clearly evident, providing a strong rationale for cancer personalized medicine. Since hypoxia is a major cause of extracellular acidosis in tumors, here, we have focused on the applications of imaging to understand the effects of hypoxia in tumors and to target hypoxia in theranostic strategies. Molecular and functional imaging have critically important roles to play in personalized medicine through the detection of hypoxia, both spatially and temporally, and by providing new understanding of the role of hypoxia in cancer aggressiveness. With the discovery of the hypoxia-inducible factor (HIF), the intervening years have also seen significant progress in understanding the transcriptional regulation of hypoxia-induced genes. These advances have provided the ability to silence HIF and understand the associated molecular and functional consequences to expand our understanding of hypoxia and its role in cancer aggressiveness. Most recently, the development of hypoxia-based theranostic strategies that combine detection and therapy are further establishing imaging-based treatment strategies for precision medicine of cancer.

Keywords

Hypoxia Imaging Vascularization Metastasis Theranostics 

Notes

Acknowledgments

We gratefully acknowledge valuable discussions with Dr. R. J. Gillies over the past two decades.

Funding information

Support from NIH R01 CA82337, R01 CA136576, R01 CA193365, and R35 CA209960 is gratefully acknowledged.

References

  1. 1.
    Dunwoodie, S. L. (2009). The role of hypoxia in development of the mammalian embryo. Developmental Cell, 17(6), 755–773.  https://doi.org/10.1016/j.devcel.2009.11.008.Google Scholar
  2. 2.
    Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. The Journal of Clinical Investigation, 115(3), 500–508.  https://doi.org/10.1172/JCI24408.Google Scholar
  3. 3.
    Nathan, S. D., Barbera, J. A., Gaine, S. P., Harari, S., Martinez, F. J., Olschewski, H., Olsson, K. M., Peacock, A. J., Pepke-Zaba, J., Provencher, S., Weissmann, N., & Seeger, W. (2018). Pulmonary hypertension in chronic lung disease and hypoxia. The European Respiratory Journal, 53, 1801914.  https://doi.org/10.1183/13993003.01914-2018.Google Scholar
  4. 4.
    Hong, W. X., Hu, M. S., Esquivel, M., Liang, G. Y., Rennert, R. C., McArdle, A., Paik, K. J., Duscher, D., Gurtner, G. C., Lorenz, H. P., & Longaker, M. T. (2014). The role of hypoxia-inducible factor in wound healing. Advances Wound Care (New Rochelle), 3(5), 390–399.  https://doi.org/10.1089/wound.2013.0520.Google Scholar
  5. 5.
    Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., Hankinson, O., Pugh, C. W., & Ratcliffe, P. J. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 94(15), 8104–8109.Google Scholar
  6. 6.
    Horsman, M. R., Mortensen, L. S., Petersen, J. B., Busk, M., & Overgaard, J. (2012). Imaging hypoxia to improve radiotherapy outcome. Nature Reviews. Clinical Oncology, 9(12), 674–687.  https://doi.org/10.1038/nrclinonc.2012.171.Google Scholar
  7. 7.
    Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. [review]. Nature Reviews. Cancer, 18(9), 576–585.  https://doi.org/10.1038/s41568-018-0030-7.Google Scholar
  8. 8.
    Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503.  https://doi.org/10.1002/ijc.28889.Google Scholar
  9. 9.
    Vaupel, P., Kelleher, D. K., & Thews, O. (1998). Modulation of tumor oxygenation. International Journal of Radiation Oncology, Biology, Physics, 42(4), 843–848.Google Scholar
  10. 10.
    Danhier, F., Danhier, P., Magotteaux, N., De Preter, G., Ucakar, B., Karroum, O., et al. (2012). Electron paramagnetic resonance highlights that the oxygen effect contributes to the radiosensitizing effect of paclitaxel. PLoS One, 7(7), e40772.  https://doi.org/10.1371/journal.pone.0040772.Google Scholar
  11. 11.
    Toma-Dasu, I., & Dasu, A. (2013). Modelling tumour oxygenation, reoxygenation and implications on treatment outcome. Computational and Mathematical Methods in Medicine, 2013, 141087–141089.  https://doi.org/10.1155/2013/141087.Google Scholar
  12. 12.
    White, D. A., Zhang, Z., Li, L., Gerberich, J., Stojadinovic, S., Peschke, P., & Mason, R. P. (2016). Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Letters, 380(1), 69–77.  https://doi.org/10.1016/j.canlet.2016.06.003.Google Scholar
  13. 13.
    Semenza, G. L., & Wang, G. L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology, 12(12), 5447–5454.Google Scholar
  14. 14.
    Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5510–5514.Google Scholar
  15. 15.
    Kaelin, W. G., Jr., & Ratcliffe, P. J. (2008). Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell, 30(4), 393–402.  https://doi.org/10.1016/j.molcel.2008.04.009.Google Scholar
  16. 16.
    Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1), 43–54.Google Scholar
  17. 17.
    Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., & Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(51), 32529–32537.Google Scholar
  18. 18.
    Tanaka, T., Wiesener, M., Bernhardt, W., Eckardt, K. U., & Warnecke, C. (2009). The human HIF (hypoxia-inducible factor)-3 alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochemical Journal, 424, 143–151.  https://doi.org/10.1042/Bj20090120.Google Scholar
  19. 19.
    Koh, M. Y., & Powis, G. (2012). Passing the baton: The HIF switch. Trends in Biochemical Sciences, 37(9), 364–372.  https://doi.org/10.1016/j.tibs.2012.06.004.Google Scholar
  20. 20.
    Nakazawa, M. S., Keith, B., & Simon, M. C. (2016). Oxygen availability and metabolic adaptations. Nature Reviews. Cancer, 16(10), 663–673.  https://doi.org/10.1038/nrc.2016.84.Google Scholar
  21. 21.
    Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., & Keshet, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394(6692), 485–490.  https://doi.org/10.1038/28867.Google Scholar
  22. 22.
    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732.  https://doi.org/10.1038/nrc1187.Google Scholar
  23. 23.
    Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., Simons, J. W., & Semenza, G. L. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Research, 60(6), 1541–1545.Google Scholar
  24. 24.
    Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., & Kaelin, W. G. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292(5516), 464–468.  https://doi.org/10.1126/science.1059817.Google Scholar
  25. 25.
    Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., & Ratcliffe, P. J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733), 271–275.  https://doi.org/10.1038/20459.Google Scholar
  26. 26.
    Hudson, C. C., Liu, M., Chiang, G. G., Otterness, D. M., Loomis, D. C., Kaper, F., Giaccia, A. J., & Abraham, R. T. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology, 22(20), 7004–7014.Google Scholar
  27. 27.
    Watson, J. A., Watson, C. J., McCann, A., & Baugh, J. (2010). Epigenetics, the epicenter of the hypoxic response. Epigenetics, 5(4), 293–296.Google Scholar
  28. 28.
    Iommarini, L., Porcelli, A. M., Gasparre, G., & Kurelac, I. (2017). Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Frontiers in Oncology, 7, 286.  https://doi.org/10.3389/fonc.2017.00286.Google Scholar
  29. 29.
    Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634.  https://doi.org/10.1038/onc.2009.441.Google Scholar
  30. 30.
    Gilkes, D. M., Semenza, G. L., & Wirtz, D. (2014). Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nature Reviews. Cancer, 14(6), 430–439.  https://doi.org/10.1038/nrc3726.Google Scholar
  31. 31.
    Goggins, E., Kakkad, S., Mironchik, Y., Jacob, D., Wildes, F., Krishnamachary, B., & Bhujwalla, Z. M. (2018). Hypoxia inducible factors modify collagen I fibers in MDA-MB-231 triple negative breast cancer xenografts. Neoplasia, 20(2), 131–139.  https://doi.org/10.1016/j.neo.2017.11.010.Google Scholar
  32. 32.
    Kakkad, S. M., Solaiyappan, M., O’Rourke, B., Stasinopoulos, I., Ackerstaff, E., Raman, V., et al. (2010). Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia, 12(8), 608–617.Google Scholar
  33. 33.
    Penet, M. F., Chen, Z., & Bhujwalla, Z. M. (2011). MRI of metastasis-permissive microenvironments. Future Oncology, 7(11), 1269–1284.  https://doi.org/10.2217/fon.11.114.Google Scholar
  34. 34.
    Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., & Scott, O. C. A. (1953). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. British Journal of Radiology, 26(312), 638–648.  https://doi.org/10.1259/0007-1285-26-312-638.Google Scholar
  35. 35.
    Corbet, C., & Feron, O. (2017). Tumour acidosis: From the passenger to the driver’s seat. Nature Reviews. Cancer, 17(10), 577–593.  https://doi.org/10.1038/nrc.2017.77.Google Scholar
  36. 36.
    Thews, O., & Riemann, A. (2019). Tumor pH and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Reviews.  https://doi.org/10.1007/s10555-018-09777-y.
  37. 37.
    Damgaci, S., Ibrahim-Hashim, A., Enriquez-Navas, P. M., Pilon-Thomas, S., Guvenis, A., & Gillies, R. J. (2018). Hypoxia and acidosis: Immune suppressors and therapeutic targets. Immunology, 154(3), 354–362.  https://doi.org/10.1111/imm.12917.Google Scholar
  38. 38.
    Vaupel, P., Hockel, M., & Mayer, A. (2007). Detection and characterization of tumor hypoxia using pO(2) histography. Antioxidants & Redox Signaling, 9(8), 1221–1235.  https://doi.org/10.1089/ars.2007.1628.Google Scholar
  39. 39.
    Stone, H. B., Brown, J. M., Phillips, T. L., & Sutherland, R. M. (1993). Oxygen in human tumors - correlations between methods of measurement and response to therapy - summary of a workshop held November 19-20, 1992, at the National-Cancer-Institute, Bethesda, Maryland. Radiation Research, 136(3), 422–434.  https://doi.org/10.2307/3578556.Google Scholar
  40. 40.
    Challapalli, A., Carroll, L., & Aboagye, E. O. (2017). Molecular mechanisms of hypoxia in cancer. Clinical and Translational Imaging, 5(3), 225–253.  https://doi.org/10.1007/s40336-017-0231-1.Google Scholar
  41. 41.
    Colliez, F., Gallez, B., & Jordan, B. F. (2017). Assessing tumor oxygenation for predicting outcome in radiation oncology: A review of studies correlating tumor hypoxic status and outcome in the preclinical and clinical settings. Frontiers in Oncology, 7, 10.  https://doi.org/10.3389/Fonc.2017.00010.Google Scholar
  42. 42.
    Zhou, H. L., Arias-Ramos, N., Lopez-Larrubia, P., Mason, R. P., Cerdan, S., & Pacheco-Torres, J. (2018). Oxygenation imaging by nuclear magnetic resonance methods. Preclinical Mri: Methods and Protocols, 1718, 297–313.  https://doi.org/10.1007/978-1-4939-7531-0_18.Google Scholar
  43. 43.
    Krohn, K. A., Link, J. M., & Mason, R. P. (2008). Molecular imaging of hypoxia. Journal of Nuclear Medicine, 49(Suppl 2), 129S–148S.  https://doi.org/10.2967/jnumed.107.045914.Google Scholar
  44. 44.
    Chapman, J. D. (1979). Current concepts in cancer - hypoxic sensitizers - implications for radiation-therapy. New England Journal of Medicine, 301(26), 1429–1432.  https://doi.org/10.1056/Nejm197912273012606.Google Scholar
  45. 45.
    Chapman, J. D., Franko, A. J., & Sharplin, J. (1981). A marker for hypoxic cells in tumors with potential clinical applicability. British Journal of Cancer, 43(4), 546–550.  https://doi.org/10.1038/Bjc.1981.79.Google Scholar
  46. 46.
    Chapman, J. D. (1984). The detection and measurement of hypoxic cells in solid tumors. Cancer, 54(11), 2441–2449.  https://doi.org/10.1002/1097-0142(19841201)54:11<2441::Aid-Cncr2820541122>3.0.Co;2-S.Google Scholar
  47. 47.
    Blasberg, R., Horowitz, M., Strong, J., Molnar, P., Patlak, C., Owens, E., & Fenstermacher, J. (1985). Regional measurements of [C-14] misonidazole distribution and blood-flow in subcutaneous Rt-9 experimental-tumors. Cancer Research, 45(4), 1692–1701.Google Scholar
  48. 48.
    Rasey, J. S., Grunbaum, Z., Magee, S., Nelson, N. J., Olive, P. L., Durand, R. E., et al. (1987). Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiation Research, 111(2), 292–304.  https://doi.org/10.2307/3576986.Google Scholar
  49. 49.
    Bonnitcha, P., Grieve, S., & Figtree, G. (2018). Clinical imaging of hypoxia: Current status and future directions. Free Radical Biology and Medicine, 126, 296–312.  https://doi.org/10.1016/j.freeradbiomed.2018.08.019.Google Scholar
  50. 50.
    Marcu, L. G., Moghaddasi, L., & Bezak, E. (2018). Imaging of tumor characteristics and molecular pathways with PET: Developments over the last decade toward personalized cancer therapy. International Journal of Radiation Oncology Biology Physics, 102(4), 1165–1182.  https://doi.org/10.1016/j.ijrobp.2018.04.055.Google Scholar
  51. 51.
    Graves, E. E., Hicks, R. J., Binns, D., Bressel, M., Le, Q. T., Peters, L., et al. (2016). Quantitative and qualitative analysis of [(18)F]FDG and [(18)F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome. European Journal of Nuclear Medicine and Molecular Imaging, 43(4), 617–625.  https://doi.org/10.1007/s00259-015-3247-7.Google Scholar
  52. 52.
    Minn, I., Koo, S. M., Lee, H. S., Brummet, M., Rowe, S. P., Gorin, M. A., et al. (2016). [64Cu]XYIMSR-06: A dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma. Oncotarget, 7(35), 56471–56479.  https://doi.org/10.18632/oncotarget.10602.Google Scholar
  53. 53.
    O’Connor, J. P. B., Robinson, S. P., & Waterton, J. C. (2019). Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. The British Journal of Radiology, 20180642.  https://doi.org/10.1259/bjr.20180642.
  54. 54.
    Taylor, N. J., Baddeley, H., Goodchild, K. A., Powell, M. E., Thoumine, M., Culver, L. A., et al. (2001). BOLD MRI of human tumor oxygenation during carbogen breathing. [Research Support, Non-U.S. Gov’t]. Journal of Magnetic Resonance Imaging, 14(2), 156–163.Google Scholar
  55. 55.
    Hoskin, P. J., Carnell, D. M., Taylor, N. J., Smith, R. E., Stirling, J. J., Daley, F. M., Saunders, M. I., Bentzen, S. M., Collins, D. J., d’Arcy, J. A., & Padhani, A. P. (2007). Hypoxia in prostate cancer: Correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations. [Research Support, Non-U.S. Gov’t]. International Journal of Radiation Oncology, Biology, Physics, 68(4), 1065–1071.  https://doi.org/10.1016/j.ijrobp.2007.01.018.Google Scholar
  56. 56.
    Hallac, R. R., Ding, Y., Yuan, Q., McColl, R. W., Lea, J., Sims, R. D., Weatherall, P. T., & Mason, R. P. (2012). Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. NMR in Biomedicine, 25(12), 1321–1330.  https://doi.org/10.1002/nbm.2804.Google Scholar
  57. 57.
    Jiang, L., Weatherall, P. T., McColl, R. W., Tripathy, D., & Mason, R. P. (2013). Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: A pilot study. Journal of Magnetic Resonance Imaging, 37(5), 1083–1092.  https://doi.org/10.1002/jmri.23891.Google Scholar
  58. 58.
    Rijpkema, M., Kaanders, J. H., Joosten, F. B., van der Kogel, A. J., & Heerschap, A. (2002). Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. International Journal of Radiation Oncology, Biology, Physics, 53(5), 1185–1191.Google Scholar
  59. 59.
    Jiang, L., McColl, R., Weatherall, P., Tripathy, D., & Mason, R. P. (2005). Blood oxygenation level dependent (BOLD) contrast MRI for early evaluation of breast cancer chemotherapy. Breast Cancer Research and Treatment, 94, S257–S258.Google Scholar
  60. 60.
    Zhao, D. W., Pacheco-Torres, J., Hallac, R. R., White, D., Peschke, P., Cerdan, S., et al. (2015). Dynamic oxygen challenge evaluated by NMR T-1 and T-2* - insights into tumor oxygenation. NMR in Biomedicine, 28(8), 937–947.  https://doi.org/10.1002/nbm.3325.Google Scholar
  61. 61.
    Arias-Ramos, N., Pacheco-Torres, J., & López-Larrubia, P. (2019). Magnetic resonance imaging approaches for predicting the response to hyperoxic radiotherapy in glioma-bearing rats. OBM. Neurobiology, 3(1), 18.  https://doi.org/10.21926/obm.neurobiol.1901020.Google Scholar
  62. 62.
    Little, R. A., Jamin, Y., Boult, J. K. R., Naish, J. H., Watson, Y., Cheung, S., Holliday, K. F., Lu, H., McHugh, D. J., Irlam, J., West, C. M. L., Betts, G. N., Ashton, G., Reynolds, A. R., Maddineni, S., Clarke, N. W., Parker, G. J. M., Waterton, J. C., Robinson, S. P., & O’Connor, J. P. B. (2018). Mapping hypoxia in renal carcinoma with oxygen-enhanced MRI: Comparison with intrinsic susceptibility MRI and pathology. Radiology, 288(3), 739–747.  https://doi.org/10.1148/radiol.2018171531.Google Scholar
  63. 63.
    Zhou, H. L., Hallac, R. R., Yuan, Q., Ding, Y., Zhang, Z. W., Xie, X. J., et al. (2017). Incorporating oxygen-enhanced MRI into multi-parametric assessment of human prostate cancer. Diagnostics, 7(3), 48.  https://doi.org/10.3390/diagnostics7030048.Google Scholar
  64. 64.
    Hectors, S. J., Wagner, M., Bane, O., Besa, C., Lewis, S., Remark, R., et al. (2017). Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Science Reporter, 7, 2452.  https://doi.org/10.1038/S41598-017-02706-Z.Google Scholar
  65. 65.
    Kodibagkar, V. D., Cui, W. N., Merritt, M. E., & Mason, R. P. (2006). Novel H-1 NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magnetic Resonance in Medicine, 55(4), 743–748.  https://doi.org/10.1002/mrm.20826.Google Scholar
  66. 66.
    Mason, R. P., Zhao, D., Pacheco-Torres, J., Cui, W., Kodibagkar, V. D., Gulaka, P. K., et al. (2010). Multimodality imaging of hypoxia in preclinical settings. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 54(3), 259–280.Google Scholar
  67. 67.
    Agarwal, S., Shankar, R. V., Inge, L. J., & Kodibagkar, V. (2015). MRI assessment of changes in tumor oxygenation post hypoxia-targeted therapy. Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, 9417.  https://doi.org/10.1117/12.2083926.
  68. 68.
    Shibata, T., Giaccia, A. J., & Brown, J. M. (2000). Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Therapy, 7(6), 493–498.  https://doi.org/10.1038/sj.gt.3301124.Google Scholar
  69. 69.
    Vordermark, D., Shibata, T., & Brown, J. M. (2001). Green fluorescent protein is a suitable reporter of tumor hypoxia despite an oxygen requirement for chromophore formation. Neoplasia, 3(6), 527–534.  https://doi.org/10.1038/sj.neo.7900192.Google Scholar
  70. 70.
    Raman, V., Artemov, D., Pathak, A. P., Winnard, P. T., McNutt, S., Yudina, A., et al. (2006). Characterizing vascular parameters in hypoxic regions: A combined magnetic resonance and optical imaging study of a human prostate cancer model. Cancer Research, 66(20), 9929–9936.  https://doi.org/10.1158/0008-5472.CAN-06-0886.Google Scholar
  71. 71.
    Krishnamachary, B., Penet, M. F., Nimmagadda, S., Mironchik, Y., Raman, V., Solaiyappan, M., Semenza, G. L., Pomper, M. G., & Bhujwalla, Z. M. (2012). Hypoxia regulates CD44 and its variant isoforms through HIF-1 alpha in triple negative breast cancer. PLoS One, 7(8), e44078.  https://doi.org/10.1371/journal.pone.0044078.Google Scholar
  72. 72.
    Danhier, P., Krishnamachary, B., Bharti, S., Kakkad, S., Mironchik, Y., & Bhujwalla, Z. M. (2015). Combining optical reporter proteins with different half-lives to detect temporal evolution of hypoxia and reoxygenation in tumors. Neoplasia, 17(12), 871–881.  https://doi.org/10.1016/j.neo.2015.11.007.Google Scholar
  73. 73.
    Zackrisson, S., van de Ven, S. M., & Gambhir, S. S. (2014). Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Research, 74(4), 979–1004.  https://doi.org/10.1158/0008-5472.CAN-13-2387.Google Scholar
  74. 74.
    Neuschmelting, V., Burton, N. C., Lockau, H., Urich, A., Harmsen, S., Ntziachristos, V., & Kircher, M. F. (2016). Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics, 4(1), 1–10.  https://doi.org/10.1016/j.pacs.2015.12.001.Google Scholar
  75. 75.
    Goh, Y., Balasundaram, G., Moothanchery, M., Attia, A., Li, X. T., Lim, H. Q., et al. (2018). Multispectral optoacoustic tomography in assessment of breast tumor margins during breast-conserving surgery: A first-in-human case study. Clinical Breast Cancer, 18(6), E1247–E1250.  https://doi.org/10.1016/j.clbc.2018.07.026.Google Scholar
  76. 76.
    Becker, A., Masthoff, M., Claussen, J., Ford, S. J., Roll, W., Burg, M., Barth, P. J., Heindel, W., Schäfers, M., Eisenblätter, M., & Wildgruber, M. (2018). Multispectral optoacoustic tomography of the human breast: Characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach. European Radiology, 28(2), 602–609.  https://doi.org/10.1007/s00330-017-5002-x.Google Scholar
  77. 77.
    Overgaard, J., Overgaard, M., Nielsen, O. S., Pedersen, A. K., & Timothy, A. R. (1982). A comparative investigation of nimorazole and misonidazole as hypoxic radiosensitizers in a C3h mammary-carcinoma Invivo. British Journal of Cancer, 46(6), 904–911.  https://doi.org/10.1038/Bjc.1982.300.Google Scholar
  78. 78.
    Tap, W., Papai, Z., van Tine, B., Attia, S., Ganjoo, K., Jones, R. L., et al. (2016). Randomized phase 3, multicenter, open-label study comparing evofosfamide (Evo) in combination with doxorubicin (D) vs. D alone in patients (pts) with advanced soft tissue sarcoma (STS): Study TH-CR-406/SARC021. Annals of Oncology, 27.  https://doi.org/10.1093/annonc/mdw388.1.
  79. 79.
    Van Cutsem, E., Lenz, H. J., Furuse, J., Tabernero, J., Heinemann, V., Ioka, T., et al. (2016). Evofosfamide (TH-302) in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma: Primary analysis of the randomized, double-blind phase III MAESTRO study. Journal of Clinical Oncology, 34(4).  https://doi.org/10.1200/jco.2016.34.4_suppl.193.
  80. 80.
    Higgins, J. P., Sarapa, N., Kim, J., & Poma, E. (2018). Unexpected pharmacokinetics of evofosfamide observed in phase III MAESTRO study. Journal of Clinical Oncology, 36(15).  https://doi.org/10.1200/Jco.2018.36.15_Suppl.2568.
  81. 81.
    Haider, S., McIntyre, A., van Stiphout, R. G. P. M., Winchester, L. M., Wigfield, S., Harris, A. L., et al. (2016). Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biology, 17, 140.  https://doi.org/10.1186/S13059-016-0999-8.Google Scholar
  82. 82.
    Siano, M., Espeli, V., Mach, N., Bossi, P., Licitra, L., Ghielmini, M., Frattini, M., Canevari, S., & de Cecco, L. (2018). Gene signatures and expression of miRNAs associated with efficacy of panitumumab in a head and neck cancer phase II trial. Oral Oncology, 82, 144–151.  https://doi.org/10.1016/j.oraloncology.2018.05.013.Google Scholar
  83. 83.
    Eustace, A., Mani, N., Span, P. N., Irlam, J. J., Taylor, J., Betts, G. N. J., Denley, H., Miller, C. J., Homer, J. J., Rojas, A. M., Hoskin, P. J., Buffa, F. M., Harris, A. L., Kaanders, J. H. A. M., & West, C. M. L. (2013). A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clinical Cancer Research, 19(17), 4879–4888.  https://doi.org/10.1158/1078-0432.CCR-13-0542.Google Scholar
  84. 84.
    Salem, A., Asselin, M. C., Reymen, B., Jackson, A., Lambin, P., West, C. M. L., et al. (2018). Targeting hypoxia to improve non-small cell lung cancer outcome. Jnci-Journal of the National Cancer Institute, 110(1), 14–30.  https://doi.org/10.1093/jnci/djx160.Google Scholar
  85. 85.
    Workman, P., Aboagye, E. O., Chung, Y. L., Griffiths, J. R., Hart, R., Leach, M. O., Maxwell, R. J., McSheehy, P., Price, P. M., Zweit, J., & Cancer Research UK Pharmacodynamic/Pharmacokinetic Technologies Advisory Committee. (2006). Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. Journal of the National Cancer Institute, 98(9), 580–598.  https://doi.org/10.1093/jnci/djj162.Google Scholar
  86. 86.
    Stadlbauer, A., Zimmermann, M., Bennani-Baiti, B., Helbich, T. H., Baltzer, P., Clauser, P., et al. (2018). Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: Initial Results. Molecular Imaging and Biology.  https://doi.org/10.1007/s11307-018-1298-4.
  87. 87.
    Wegner, C. S., Hauge, A., Simonsen, T. G., Gaustad, J. V., Andersen, L. M. K., & Rofstad, E. K. (2018). DCE-MRI of sunitinib-induced changes in tumor microvasculature and hypoxia: A study of pancreatic ductal adenocarcinoma xenografts. [Research Support, Non-U.S. Gov’t]. Neoplasia, 20(7), 734–744.  https://doi.org/10.1016/j.neo.2018.05.006.Google Scholar
  88. 88.
    Tomaszewski, M. R., Gonzalez, I. Q., O’Connor, J. P., Abeyakoon, O., Parker, G. J., Williams, K. J., Gilbert, F. J., & Bohndiek, S. E. (2017). Oxygen enhanced optoacoustic tomography (OE-OT) reveals vascular dynamics in murine models of prostate cancer. [Research Support, Non-U.S. Gov’t]. Theranostics, 7(11), 2900–2913.  https://doi.org/10.7150/thno.19841.Google Scholar
  89. 89.
    Kakkad, S. M., Penet, M. F., Akhbardeh, A., Pathak, A. P., Solaiyappan, M., Raman, V., et al. (2013). Hypoxic tumor environments exhibit disrupted collagen I fibers and low macromolecular transport. Plos One, 8(12), e81869.  https://doi.org/10.1371/journal.pone.0081869.Google Scholar
  90. 90.
    Penet, M. F., Kakkad, S., Pathak, A. P., Krishnamachary, B., Mironchik, Y., Raman, V., Solaiyappan, M., & Bhujwalla, Z. M. (2017). Structure and function of a prostate cancer dissemination-permissive extracellular matrix. Clinical Cancer Research, 23(9), 2245–2254.  https://doi.org/10.1158/1078-0432.CCR-16-1516.Google Scholar
  91. 91.
    Bharti, S. K., Kakkad, S., Danhier, P., Wildes, F., Penet, M. F., Krishnamachary, B., & Bhujwalla, Z. M. (2019). Hypoxia patterns in primary and metastatic prostate cancer environments. Neoplasia, 21(2), 239–246.  https://doi.org/10.1016/j.neo.2018.12.004.Google Scholar
  92. 92.
    da Ponte, K. F., Berro, D. H., Collet, S., Constans, J. M., Emery, E., Valable, S., & Guillamo, J. S. (2017). In vivo relationship between hypoxia and angiogenesis in human glioblastoma: A multimodal imaging study. Journal of Nuclear Medicine, 58(10), 1574–1579.  https://doi.org/10.2967/jnumed.116.188557.Google Scholar
  93. 93.
    Ayuso, J. M., Gillette, A., Lugo-Cintron, K., Acevedo-Acevedo, S., Gomez, I., Morgan, M., et al. (2018). Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations. Ebiomedicine, 37, 144–157.  https://doi.org/10.1016/j.ebiom.2018.10.046.Google Scholar
  94. 94.
    Shah, T., Krishnamachary, B., Wildes, F., Mironchik, Y., Kakkad, S. M., Jacob, D., et al. (2015). HIF isoforms have divergent effects on invasion, metastasis, metabolism and formation of lipid droplets. Oncotarget, 6(29), 28104–28119.  https://doi.org/10.18632/oncotarget.4612.Google Scholar
  95. 95.
    Bharti, S. K., Mironchik, Y., Wildes, F., Penet, M. F., Goggins, E., Krishnamachary, B., et al. (2018). Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget, 9(20), 15326–15339.  https://doi.org/10.18632/oncotarget.24569.Google Scholar
  96. 96.
    Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(Pt 24), 4195–4200.  https://doi.org/10.1242/jcs.023820.Google Scholar
  97. 97.
    Casazza, A., Di Conza, G., Wenes, M., Finisguerra, V., Deschoemaeker, S., & Mazzone, M. (2014). Tumor stroma: A complexity dictated by the hypoxic tumor microenvironment. Oncogene, 33(14), 1743–1754.  https://doi.org/10.1038/onc.2013.121.Google Scholar
  98. 98.
    Guadall, A., Orriols, M., Alcudia, J. F., Cachofeiro, V., Martinez-Gonzalez, J., & Rodriguez, C. (2011). Hypoxia-induced ROS signaling is required for LOX up-regulation in endothelial cells. Frontiers in Bioscience (Elite Edition), 3, 955–967.Google Scholar
  99. 99.
    Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., et al. (2003). Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Research, 63(5), 1138–1143.Google Scholar
  100. 100.
    Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., & Amelio, I. (2018). The hypoxic tumour microenvironment. Oncogenesis, 7(1), 10.  https://doi.org/10.1038/s41389-017-0011-9.Google Scholar
  101. 101.
    Postovit, L. M., Abbott, D. E., Payne, S. L., Wheaton, W. W., Margaryan, N. V., Sullivan, R., Jansen, M. K., Csiszar, K., Hendrix, M. J. C., & Kirschmann, D. A. (2008). Hypoxia/reoxygenation: A dynamic regulator of lysyl oxidase-facilitated breast cancer migration. Journal of Cellular Biochemistry, 103(5), 1369–1378.  https://doi.org/10.1002/jcb.21517.Google Scholar
  102. 102.
    Jiang, D., & Lim, S. Y. (2016). Influence of immune myeloid cells on the extracellular matrix during cancer metastasis. Cancer Microenvironment, 9(1), 45–61.  https://doi.org/10.1007/s12307-016-0181-6.Google Scholar
  103. 103.
    Wang, Y., Wang, H., Li, J., Entenberg, D., Xue, A., Wang, W., & Condeelis, J. (2016). Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital, 5(2), e1187803.  https://doi.org/10.1080/21659087.2016.1187803.Google Scholar
  104. 104.
    Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. Bmc Medicine, 4, 38.  https://doi.org/10.1186/1741-7015-4-38.Google Scholar
  105. 105.
    Yan, Y. M., Zuo, X. S., & Wei, D. Y. (2015). Concise review: Emerging role of CD44 in cancer stem cells: A promising biomarker and therapeutic target. Stem Cells Translational Medicine, 4(9), 1033–1043.  https://doi.org/10.5966/sctm.2015-0048.Google Scholar
  106. 106.
    Smith, S. J., Diksin, M., Chhaya, S., Sairam, S., Estevez-Cebrero, M. A., & Rahman, R. (2017). The invasive region of glioblastoma defined by 5ALA guided surgery has an altered cancer stem cell marker profile compared to central tumour. International Journal of Molecular Sciences, 18(11), 2452.  https://doi.org/10.3390/Ijms18112452.Google Scholar
  107. 107.
    Fiaschi, T., Giannoni, E., Taddei, M. L., Cirri, P., Marini, A., Pintus, G., et al. (2013). Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle, 12(11), 1791–1801.  https://doi.org/10.4161/cc.24902.Google Scholar
  108. 108.
    Scholer-Dahirel, A., Costa, A., & Mechta-Grigoriou, F. (2013). Control of cancer-associated fibroblast function by oxidative stress: A new piece in the puzzle. [Comment]. Cell Cycle, 12(14), 2169.  https://doi.org/10.4161/cc.25547.Google Scholar
  109. 109.
    Nakao, M., Ishii, G., Nagai, K., Kawase, A., Kenmotsu, H., Kon-No, H., et al. (2009). Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. [Research Support, Non-U.S. Gov’t]. Cancer, 115(12), 2732–2743.  https://doi.org/10.1002/cncr.24303.Google Scholar
  110. 110.
    Nakamura, H., Ichikawa, T., Nakasone, S., Miyoshi, T., Sugano, M., Kojima, M., Fujii, S., Ochiai, A., Kuwata, T., Aokage, K., Suzuki, K., Tsuboi, M., & Ishii, G. (2018). Abundant tumor promoting stromal cells in lung adenocarcinoma with hypoxic regions. Lung Cancer, 115, 56–63.  https://doi.org/10.1016/j.lungcan.2017.11.013.Google Scholar
  111. 111.
    Lee, S. H., Mcintyre, D., Honess, D., Hulikova, A., Pacheco-Torres, J., Cerdan, S., et al. (2018). Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. British Journal of Cancer, 119(5), 622–630.  https://doi.org/10.1038/s41416-018-0216-5.Google Scholar
  112. 112.
    Ray, K. J., Simard, M. A., Larkin, J. R., Coates, J., Kinchesh, P., Smart, S. C., Higgins, G. S., Chappell, M., & Sibson, N. (2019). Tumour pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging. Cancer Research.  https://doi.org/10.1158/0008-5472.CAN-18-2168.
  113. 113.
    Bhujwalla, Z. M., Kakkad, S., Chen, Z., Jin, J., Hapuarachchige, S., Artemov, D., & Penet, M. F. (2018). Theranostics and metabolotheranostics for precision medicine in oncology. Journal of Magnetic Resonance, 291, 141–151.  https://doi.org/10.1016/j.jmr.2018.03.004.Google Scholar
  114. 114.
    Song, G., Cheng, L., Chao, Y., Yang, K., & Liu, Z. (2017). Emerging nanotechnology and advanced materials for cancer radiation therapy. [Review]. Adv Mater, 29(32).  https://doi.org/10.1002/adma.201700996.
  115. 115.
    Lau, J., Lin, K. S., & Benard, F. (2017). Past, present, and future: Development of theranostic agents targeting carbonic anhydrase IX. [Review Research Support, Non-U.S. Gov’t]. Theranostics, 7(17), 4322–4339.  https://doi.org/10.7150/thno.21848.Google Scholar
  116. 116.
    Iikuni, S., Ono, M., Watanabe, H., Shimizu, Y., Sano, K., & Saji, H. (2018). Cancer radiotheranostics targeting carbonic anhydrase-IX with (111)In- and (90)Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics, 8(11), 2992–3006.  https://doi.org/10.7150/thno.20982.Google Scholar
  117. 117.
    Chen, Y., Bian, X., Aliru, M., Deorukhkar, A. A., Ekpenyong, O., Liang, S., et al. (2018). Hypoxia-targeted gold nanorods for cancer photothermal therapy. Oncotarget, 9(41), 26556–26571.  https://doi.org/10.18632/oncotarget.25492.Google Scholar
  118. 118.
    Alsaab, H. O., Sau, S., Alzhrani, R. M., Cheriyan, V. T., Polin, L. A., Vaishampayan, U., Rishi, A. K., & Iyer, A. K. (2018). Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials, 183, 280–294.  https://doi.org/10.1016/j.biomaterials.2018.08.053.Google Scholar
  119. 119.
    Meng, X. Q., Zhang, J. L., Sun, Z. H., Zhou, L. H., Deng, G. J., Li, S. P., et al. (2018). Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics, 8(21), 6025–6034.  https://doi.org/10.7150/thno.26607.Google Scholar
  120. 120.
    Hua, L., Wang, Z., Zhao, L., Mao, H., Wang, G., Zhang, K., Liu, X., Wu, D., Zheng, Y., Lu, J., Yu, R., & Liu, H. (2018). Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics, 8(18), 5088–5105.  https://doi.org/10.7150/thno.26225.Google Scholar
  121. 121.
    Feng, L., Cheng, L., Dong, Z., Tao, D., Barnhart, T. E., Cai, W., Chen, M., & Liu, Z. (2017). Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano, 11(1), 927–937.  https://doi.org/10.1021/acsnano.6b07525.Google Scholar
  122. 122.
    Chen, Z. H., Penet, M. F., Krishnamachary, B., Banerjee, S. R., Pomper, M. G., & Bhujwalla, Z. M. (2016). PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer. Biomaterials, 80, 57–67.  https://doi.org/10.1016/j.biomaterials.2015.11.048.Google Scholar
  123. 123.
    Hsiao, H. T., Xing, L. G., Deng, X. L., Sun, X. R., Ling, C. C., & Li, G. C. (2014). Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells. Oncology Reports, 32(2), 723–729.  https://doi.org/10.3892/or.2014.3238.Google Scholar
  124. 124.
    Kumar, D., New, J., Vishwakarma, V., Joshi, R., Enders, J., Lin, F. C., et al. (2018). Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Research, 78(14), 3769–3782.  https://doi.org/10.1158/0008-5472.CAN-17-1076.Google Scholar
  125. 125.
    Kashima, H., Noma, K., Ohara, T., Kato, T., Katsura, Y., Komoto, S., Sato, H., Katsube, R., Ninomiya, T., Tazawa, H., Shirakawa, Y., & Fujiwara, T. (2019). Cancer-associated fibroblasts (CAFs) promote the lymph node metastasis of esophageal squamous cell carcinoma. International Journal of Cancer, 144(4), 828–840.  https://doi.org/10.1002/ijc.31953.Google Scholar
  126. 126.
    Donnarumma, E., Fiore, D., Nappa, M., Roscigno, G., Adamo, A., Iaboni, M., et al. (2017). Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget, 8(12), 19592–19608.  https://doi.org/10.18632/oncotarget.14752.Google Scholar
  127. 127.
    Paidi, S. K., Rizwan, A., Zheng, C., Cheng, M. L., Glunde, K., & Barman, I. (2017). Label-free Raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer. Cancer Research, 77(2), 247–256.  https://doi.org/10.1158/0008-5472.CAN-16-1862.Google Scholar
  128. 128.
    Napel, S., Mu, W., Jardim-Perassi, B. V., Aerts, H. J. W. L., & Gillies, R. J. (2018). Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer, 124(24), 4633–4649.  https://doi.org/10.1002/cncr.31630.Google Scholar
  129. 129.
    Stasinopoulos, I., Penet, M. F., Krishnamachary, B., & Bhujwalla, Z. M. (2010). Molecular and functional imaging of invasion and metastasis: Windows into the metastatic cascade. Cancer Biomarkers, 7(4), 173–188.  https://doi.org/10.3233/CBM-2010-0188.Google Scholar
  130. 130.
    Seong, J., Tajik, A., Sun, J., Guan, J. L., Humphries, M. J., Craig, S. E., Shekaran, A., Garcia, A. J., Lu, S., Lin, M. Z., Wang, N., & Wang, Y. (2013). Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19372–19377.  https://doi.org/10.1073/pnas.1307405110.Google Scholar
  131. 131.
    Polacheck, W. J., Zervantonakis, I. K., & Kamm, R. D. (2013). Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences, 70(8), 1335–1356.  https://doi.org/10.1007/s00018-012-1115-1.Google Scholar
  132. 132.
    Sulzmaier, F. J., Jean, C., & Schlaepfer, D. D. (2014). FAK in cancer: Mechanistic findings and clinical applications. Nature Reviews. Cancer, 14(9), 598–610.  https://doi.org/10.1038/nrc3792.Google Scholar
  133. 133.
    Yoon, H., Dehart, J. P., Murphy, J. M., & Lim, S. T. (2015). Understanding the roles of FAK in cancer: Inhibitors, genetic models, and new insights. The Journal of Histochemistry and Cytochemistry, 63(2), 114–128.  https://doi.org/10.1369/0022155414561498.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Samata Kakkad
    • 1
  • Balaji Krishnamachary
    • 1
  • Desmond Jacob
    • 1
  • Jesus Pacheco-Torres
    • 1
  • Eibhlin Goggins
    • 1
  • Santosh Kumar Bharti
    • 1
  • Marie-France Penet
    • 1
    • 2
  • Zaver M. Bhujwalla
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Radiation Oncology and Molecular Radiation SciencesThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations