Advertisement

Cancer and Metastasis Reviews

, Volume 38, Issue 1–2, pp 149–155 | Cite as

Acidosis and cancer: from mechanism to neutralization

  • Arig Ibrahim-HashimEmail author
  • Veronica Estrella
Article

Abstract

The extracellular pH of solid tumors is unequivocally acidic due to a combination of high rates of lactic acid production (a consequence of fermentative glycolytic metabolism) and poor perfusion. This has been documented by us and others in a wide variety of solid tumor models, primarily using magnetic resonance spectroscopic imaging (MRSI). This acidity contributes to tumor progression by inducing genome instability, promoting local invasion and metastases, inhibiting anti-tumor immunity, and conferring resistance to chemo- and radio-therapies. Systemic buffer therapies can neutralize tumor acidity and has been shown to inhibit local invasion and metastasis and improve immune surveillance in a variety of cancer model systems. This review will revisit the causes and consequences of acidosis by summarizing strategies used by cancer cells to adapt to acidosis, and how this acidity associated with carcinogenesis, metastasis, and immune function. Finally, this review will discuss how neutralization of acidity can be used to inhibit carcinogenesis and metastasis and improve anti-cancer immunotherapy.

Keywords

Acidosis Carcinogenesis Metastasis Neutralization Immunotherapy 

Notes

References

  1. 1.
    Gillies, R. J., Liu, Z., & Bhujwalla, Z. (1994). 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. The American Journal of Physiology, 267(1 Pt 1), C195–C203.  https://doi.org/10.1152/ajpcell.1994.267.1.C195.Google Scholar
  2. 2.
    Zhang, X., Lin, Y., & Gillies, R. J. (2010). Tumor pH and its measurement. Journal of Nuclear Medicine, 51(8), 1167–1170.  https://doi.org/10.2967/jnumed.109.068981.Google Scholar
  3. 3.
    Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 66(10), 5216–5223.  https://doi.org/10.1158/0008-5472.CAN-05-4193.Google Scholar
  4. 4.
    Mizushima, N., & Klionsky, D. J. (2007). Protein turnover via autophagy: implications for metabolism. Annual Review of Nutrition, 27, 19–40.  https://doi.org/10.1146/annurev.nutr.27.061406.093749.Google Scholar
  5. 5.
    Marino, M. L., Pellegrini, P., Di Lernia, G., Djavaheri-Mergny, M., Brnjic, S., Zhang, X., Hagg, M., Linder, S., Fais, S., Codogno, P., & De Milito, A. (2012). Autophagy is a protective mechanism for human melanoma cells under acidic stress. The Journal of Biological Chemistry, 287(36), 30664–30676.Google Scholar
  6. 6.
    Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemsey, J. B., Lloyd, M. C., Sloane, B. F., & Gillies, R. J. (2012). Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research, 72(16), 3938–3947.  https://doi.org/10.1158/0008-5472.CAN-11-3881.Google Scholar
  7. 7.
    Wojtkowiak, J. W., & Gillies, R. J. (2012). Autophagy on acid. Autophagy., 8(11), 1688–1689.  https://doi.org/10.4161/auto.21501.Google Scholar
  8. 8.
    Pellegrini, P., Strambi, A., Zipoli, C., Hagg-Olofsson, M., Buoncervello, M., Linder, S., & De Milito, A. (2014). Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy, 10(4), 562–571.  https://doi.org/10.4161/auto.27901.Google Scholar
  9. 9.
    Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A., & Kimmelman, A. C. (2016). Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature., 536(7617), 479–483.  https://doi.org/10.1038/nature19084.Google Scholar
  10. 10.
    Johnson, D. E., Ostrowski, P., Jaumouille, V., & Grinstein, S. (2016). The position of lysosomes within the cell determines their luminal pH. The Journal of Cell Biology, 212(6), 677–692.  https://doi.org/10.1083/jcb.201507112.Google Scholar
  11. 11.
    Glunde, K., Guggino, S. E., Solaiyappan, M., Pathak, A. P., Ichikawa, Y., & Bhujwalla, Z. M. (2003). Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia., 5(6), 533–545.Google Scholar
  12. 12.
    Rozhin, J., Sameni, M., Ziegler, G., & Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54(24), 6517–6525.Google Scholar
  13. 13.
    Steffan, J. J., Snider, J. L., Skalli, O., Welbourne, T., & Cardelli, J. A. (2009). Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic (Copenhagen, Denmark), 10(6), 737–753.  https://doi.org/10.1111/j.1600-0854.2009.00904.x. Google Scholar
  14. 14.
    Damaghi, M., Tafreshi, N. K., Lloyd, M. C., Sprung, R., Estrella, V., Wojtkowiak, J. W., Morse, D. L., Koomen, J. M., Bui, M. M., Gatenby, R. A., & Gillies, R. J. (2015). Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nature Communications, 6, 8752.  https://doi.org/10.1038/ncomms9752.Google Scholar
  15. 15.
    Dovmark, T. H., Saccomano, M., Hulikova, A., Alves, F., & Swietach, P. (2017). Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene, 36(32), 4538–4550.  https://doi.org/10.1038/onc.2017.71.Google Scholar
  16. 16.
    Li, L., Wang, W., Zhang, R., Liu, J., Yu, J., Wu, X., Xu, Y., Ma, M., & Huang, J. (2017). High expression of LAMP2 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomarkers, 19, 305–311.  https://doi.org/10.3233/CBM-160469.Google Scholar
  17. 17.
    Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim-Hashim A, Gillies RJ, Powell JD, Dang CV. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell. 2018;(in press), 174, 72, 87.e32.Google Scholar
  18. 18.
    Delikatny, E. J., Chawla, S., Leung, D. J., & Poptani, H. (2011). MR-visible lipids and the tumor microenvironment. NMR in Biomedicine, 24(6), 592–611.  https://doi.org/10.1002/nbm.1661.Google Scholar
  19. 19.
    Pillai, S., Wojtkowiak, J. W., Damaghi, M., Gatenby, R., & Gillies, R. (2017). Abstract 3538: Enhanced dependence on lipid metabolism is a cellular adaptation to acidic microenvironment. Cancer Research, 77(13 Supplement), 3538.  https://doi.org/10.1158/1538-7445.am2017-3538.Google Scholar
  20. 20.
    Tirinato, L., Pagliari, F., Limongi, T., Marini, M., Falqui, A., Seco, J., Candeloro, P., Liberale, C., & Di Fabrizio, E. (2017). An overview of lipid droplets in cancer and cancer stem cells. Stem Cells International, 2017, 1656053.  https://doi.org/10.1155/2017/1656053.Google Scholar
  21. 21.
    Krahmer, N., Farese, R. V., Jr., & Walther, T. C. (2013). Balancing the fat: lipid droplets and human disease. EMBO Molecular Medicine, 5(7), 973–983.  https://doi.org/10.1002/emmm.201100671.Google Scholar
  22. 22.
    Carr, R. M., & Ahima, R. S. (2016). Pathophysiology of lipid droplet proteins in liver diseases. Experimental Cell Research, 340(2), 187–192.  https://doi.org/10.1016/j.yexcr.2015.10.021.Google Scholar
  23. 23.
    Wallstab, C., Eleftheriadou, D., Schulz, T., Damm, G., Seehofer, D., Borlak, J., Holzhutter, H. G., & Berndt, N. (2017). A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis. The FEBS Journal, 284(19), 3245–3261.  https://doi.org/10.1111/febs.14189.Google Scholar
  24. 24.
    Antalis, C. J., Uchida, A., Buhman, K. K., & Siddiqui, R. A. (2011). Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clinical & Experimental Metastasis, 28(8), 733–741.  https://doi.org/10.1007/s10585-011-9405-9.Google Scholar
  25. 25.
    Persi, E., Duran-Firgola, M., Damaghi, M., Roush, W. R., Aloy, P., Cleveland, J. L., Gillies, R. J., & Ruppin, E. (2018). Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature Communications (in press).Google Scholar
  26. 26.
    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer., 4(11), 891–899.  https://doi.org/10.1038/nrc1478.Google Scholar
  27. 27.
    Wykoff, C. C., Beasley, N., Watson, P. H., Campo, L., Chia, S. K., English, R., Pastorek, J., Sly, W. S., Ratcliffe, P., & Harris, A. L. (2001). Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. The American Journal of Pathology, 158(3), 1011–1019.  https://doi.org/10.1016/S0002-9440(10)64048-5.Google Scholar
  28. 28.
    Gillies, R. J., & Gatenby, R. A. (2007). Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? Journal of Bioenergetics and Biomembranes, 39(3), 251–257.  https://doi.org/10.1007/s10863-007-9085-y.Google Scholar
  29. 29.
    Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12(7), 487–493.  https://doi.org/10.1038/nrc3298.Google Scholar
  30. 30.
    Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature reviews Cancer, 8(1), 56–61.  https://doi.org/10.1038/nrc2255.Google Scholar
  31. 31.
    Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nature Reviews Cancer, 18, 576–585.  https://doi.org/10.1038/s41568-018-0030-7.Google Scholar
  32. 32.
    Rothberg, J. M., Bailey, K. M., Wojtkowiak, J. W., Ben-Nun, Y., Bogyo, M., Weber, E., Moin, K., Blum, G., Mattingly, R. R., Gillies, R. J., & Sloane, B. F. (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia., 15(10), 1125–1137.Google Scholar
  33. 33.
    Avnet, S., Di Pompo, G., Chano, T., Errani, C., Ibrahim-Hashim, A., Gillies, R. J., Donati, D. M., & Baldini, N. (2017). Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-kappaB activation. International Journal of Cancer, 140(6), 1331–1345.  https://doi.org/10.1002/ijc.30540.Google Scholar
  34. 34.
    Tafreshi, N. K., Bui, M. M., Bishop, K., Lloyd, M. C., Enkemann, S. A., Lopez, A. S., Abrahams, D., Carter, B. W., Vagner, J., Grobmyer, S. R., Gillies, R. J., & Morse, D. L. (2012). Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 18(1), 207–219.  https://doi.org/10.1158/1078-0432.CCR-11-0238.Google Scholar
  35. 35.
    Tafreshi, N. K., Lloyd, M., Bui, M., Gillies, R. J., & Morse, D. (2013). Carbonic Anhydrase IX as an Imaging and Therapeutic Target for Tumors and Metastases. In S. Frost & R. McKenna (Eds.), Carbonic Anhydrases.Google Scholar
  36. 36.
    Lloyd, M. C., Alfarouk, K. O., Verduzco, D., Bui, M. M., Gillies, R. J., Ibrahim, M. E., Brown, J. S., & Gatenby, R. A. (2014). Vascular measurements correlate with estrogen receptor status. BMC Cancer, 14(1), 279.  https://doi.org/10.1186/1471-2407-14-279.Google Scholar
  37. 37.
    Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. (2016). Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Research, 76(11), 3136–3144.  https://doi.org/10.1158/0008-5472.CAN-15-2962.Google Scholar
  38. 38.
    Tafreshi, N. K., Lloyd, M. C., Bui, M. M., Gillies, R. J., & Morse, D. L. (2014). Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Sub-cellular biochemistry, 75, 221–254.  https://doi.org/10.1007/978-94-007-7359-2_12.Google Scholar
  39. 39.
    Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., & Gillies, R. J. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 73(5), 1524–1535.  https://doi.org/10.1158/0008-5472.CAN-12-2796.Google Scholar
  40. 40.
    Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N. Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., Nohadani, M., Eklund, A. C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P. A., & Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366(10), 883–892.  https://doi.org/10.1056/NEJMoa1113205.Google Scholar
  41. 41.
    van Sluis, R., Bhujwalla, Z. M., Raghunand, N., Ballesteros, P., Alvarez, J., Cerdan, S., Galons, J. P., & Gillies, R. J. (1999). In vivo imaging of extracellular pH using 1H MRSI. Magnetic Resonance in Medicine, 41(4), 743–750.Google Scholar
  42. 42.
    O'Connor, J. P., Rose, C. J., Waterton, J. C., Carano, R. A., Parker, G. J., & Jackson, A. (2015). Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clinical Cancer Research, 21(2), 249–257.  https://doi.org/10.1158/1078-0432.CCR-14-0990.Google Scholar
  43. 43.
    Wu, J., Cao, G., Sun, X., Lee, J., Rubin, D. L., Napel, S., Kurian, A. W., Daniel, B. L., & Li, R. (2018). Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology., 288(1), 26–35.  https://doi.org/10.1148/radiol.2018172462.Google Scholar
  44. 44.
    Grove, O., Berglund, A. E., Schabath, M. B., Aerts, H. J., Dekker, A., Wang, H., Velazquez, E. R., Lambin, P., Gu, Y., Balagurunathan, Y., Eikman, E., Gatenby, R. A., Eschrich, S., & Gillies, R. J. (2015). Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One, 10(3), e0118261.  https://doi.org/10.1371/journal.pone.0118261.Google Scholar
  45. 45.
    Beig, N., Khorrami, M., Alilou, M., Prasanna, P., Braman, N., Orooji, M., Rakshit, S., Bera, K., Rajiah, P., Ginsberg, J., Donatelli, C., Thawani, R., Yang, M., Jacono, F., Tiwari, P., Velcheti, V., Gilkeson, R., Linden, P., & Madabhushi, A. (2018). Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology, 180910.  https://doi.org/10.1148/radiol.2018180910.
  46. 46.
    Gatenby, R. A., Grove, O., & Gillies, R. J. (2013). Quantitative imaging in cancer evolution and ecology. Radiology, 269(1), 8–15.  https://doi.org/10.1148/radiol.13122697.Google Scholar
  47. 47.
    Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563–577.  https://doi.org/10.1148/radiol.2015151169.Google Scholar
  48. 48.
    Farhidzadeh, H., Chaudhury, B., Scott, J. G., Goldgof, D., Hall, L. O., Gatenby, R. A., Gillies, R. J., & Raghavan, M. (2016). Signal intensity analysis of ecological defined habitat in soft tissue sarcomas to predict metastasis development. SPIE Medial Imaging, 2016.  https://doi.org/10.1117/12.2216961.
  49. 49.
    Stoyanova, R., Pollack, A., Takhar, M., Lynne, C., Parra, N., Lam, L. L., Alshalalfa, M., Buerki, C., Castillo, R., Jorda, M., Ashab, H. A., Kryvenko, O. N., Punnen, S., Parekh, D. J., Abramowitz, M. C., Gillies, R. J., Davicioni, E., Erho, N., & Ishkanian, A. (2016). Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget, 7, 53362–53376.  https://doi.org/10.18632/oncotarget.10523.Google Scholar
  50. 50.
    Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5, 4006.  https://doi.org/10.1038/ncomms5006.Google Scholar
  51. 51.
    Damgaci, S., Ibrahim-Hashim, A., Enriquez-Navas, P. M., Pilon-Thomas, S., Guvenis, A., & Gillies, R. J. (2018). Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology, 154(3), 354–362.  https://doi.org/10.1111/imm.12917.Google Scholar
  52. 52.
    Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of Leukocyte Biology, 69(4), 522–530.Google Scholar
  53. 53.
    Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., Tuccitto, A., Tagliabue, E., Castelli, C., & Rivoltini, L. (2017). Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 43, 74–89.  https://doi.org/10.1016/j.semcancer.2017.03.001.Google Scholar
  54. 54.
    Husain, Z., Huang, Y. N., Seth, P., & Sukhatme, V. P. (2013). Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. Journal of Immunology, 191(3), 1486–1495.  https://doi.org/10.4049/jimmunol.1202702.Google Scholar
  55. 55.
    Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mule, J. J., Ibrahim-Hashim, A., & Gillies, R. J. (2016). Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Research, 76(6), 1381–1390.  https://doi.org/10.1158/0008-5472.CAN-15-1743.Google Scholar
  56. 56.
    Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., Huber, V., Parmiani, G., Generoso, L., Santinami, M., Borghi, M., Fais, S., Bellone, M., & Rivoltini, L. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Research, 72(11), 2746–2756.  https://doi.org/10.1158/0008-5472.CAN-11-1272.Google Scholar
  57. 57.
    Damaghi, M., Wojtkowiak, J. W., & Gillies, R. J. (2013). pH sensing and regulation in cancer. Frontiers in Physiology, 4, 370.  https://doi.org/10.3389/fphys.2013.00370.Google Scholar
  58. 58.
    Tong, J., Wu, W. N., Kong, X., Wu, P. F., Tian, L., Du, W., Fang, M., Zheng, F., Chen, J. G., Tan, Z., & Gong, F. (2011). Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. Journal of Immunology, 186(6), 3686–3692.  https://doi.org/10.4049/jimmunol.1001346.Google Scholar
  59. 59.
    Mahoney, B. P., Raghunand, N., Baggett, B., & Gillies, R. J. (2003). Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochemical Pharmacology, 66(7), 1207–1218.Google Scholar
  60. 60.
    Raghunand, N., Mahoney, B. P., & Gillies, R. J. (2003). Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochemical Pharmacology, 66(7), 1219–1229.Google Scholar
  61. 61.
    Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., Hashim, A. I., Morse, D. L., Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research, 69(6), 2260–2268.  https://doi.org/10.1158/0008-5472.CAN-07-5575.Google Scholar
  62. 62.
    Ibrahim Hashim, A., Cornnell, H. H., Coelho Ribeiro Mde, L., Abrahams, D., Cunningham, J., Lloyd, M., Martinez, G. V., Gatenby, R. A., & Gillies, R. J. (2011). Reduction of metastasis using a non-volatile buffer. Clinical & Experimental Metastasis, 28(8), 841–849.  https://doi.org/10.1007/s10585-011-9415-7.Google Scholar
  63. 63.
    Ribeiro, M., Silva, A. S., Bailey, K., Kumar, N. B., Sellers, T. A., Gatenby, R. A., Ibrahim Hashim, A., & Gillies, R. J. (2012). Buffer therapy for cancer. Journal of Nutrition & Food Sciences, S2, 1–7.Google Scholar
  64. 64.
    Ibrahim-Hashim, A., Cornnell, H. H., Abrahams, D., Lloyd, M., Bui, M., Gillies, R. J., & Gatenby, R. A. (2012). Systemic buffers inhibit carcinogenesis in TRAMP mice. The Journal of Urology, 188(2), 624–631.  https://doi.org/10.1016/j.juro.2012.03.113.Google Scholar
  65. 65.
    Ibrahim-Hashim, A., Robertson-Tessi, M., Enriquez-Navas, P. M., Damaghi, M., Balagurunathan, Y., Wojtkowiak, J. W., Russell, S., Yoonseok, K., Lloyd, M. C., Bui, M. M., Brown, J. S., Anderson, A. R. A., Gillies, R. J., & Gatenby, R. A. (2017). Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Research, 77(9), 2242–2254.  https://doi.org/10.1158/0008-5472.CAN-16-2844.Google Scholar
  66. 66.
    Ibrahim-Hashim, A., Wojtkowiak, J. W., de Lourdes Coelho Ribeiro, M., Estrella, V., Bailey, K. M., Cornnell, H. H., Gatenby, R. A., & Gillies, R. J. (2011). Free base lysine increases survival and reduces metastasis in prostate cancer model. J Cancer Sci Ther, 4(Suppl 1).Google Scholar
  67. 67.
    Ibrahim-Hashim, A., Abrahams, D., Enriquez-Navas, P. M., Luddy, K., Gatenby, R. A., & Gillies, R. J. (2017). Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Medicine, 6(7), 1720–1729.  https://doi.org/10.1002/cam4.1032.Google Scholar
  68. 68.
    Ibrahim Hashim, A., Zhang, X., Wojtkowiak, J. W., Martinez, G. V., & Gillies, R. J. (2011). Imaging pH and metastasis. NMR in Biomedicine, 24(6), 582–591.  https://doi.org/10.1002/nbm.1644.Google Scholar
  69. 69.
    Bohme, I., & Bosserhoff, A. K. (2016). Acidic tumor microenvironment in human melanoma. Pigment Cell & Melanoma Research, 29, 508–523.  https://doi.org/10.1111/pcmr.12495.Google Scholar
  70. 70.
    Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mule, J. J., Ibrahim-Hashim, A., & Gillies, R. J. (2015). Neutralization of tumor acidity improves antitumor responses to immunotherapeutic interventions. Cancer Research, 76, 1381–1390.  https://doi.org/10.1158/0008-5472.CAN-15-1743. Google Scholar
  71. 71.
    Pilot, C., Mahipal, A., & Gillies, R. J. (2018). Buffer Therapy-->Buffer Diet. K Nutr. Food Science, 8(2), 684–688.Google Scholar
  72. 72.
    Tian, B., Wong, W. Y., Hegmann, E., Gaspar, K., Kumar, P., & Chao, H. (2015). Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer. Bioconjugate Chemistry, 26(6), 1144–1155.  https://doi.org/10.1021/acs.bioconjchem.5b00237.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cancer PhysiologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.Department of Oncological SciencesUniversity of South FloridaTampaUSA

Personalised recommendations