Advertisement

Acidosis promotes tumorigenesis by activating AKT/NF-κB signaling

  • Liu Yang
  • Xiaoge Hu
  • Yin-Yuan MoEmail author
Article
  • 26 Downloads

Abstract

The microenvironment of solid tumors is often acidic due to poor vascular perfusion, regional hypoxia, and increased glycolytic activity of tumor cells. Although acidosis is harmful to most types of cells, tumor cells seem well adapted to such harsh conditions. Moreover, overwhelming evidence indicates that tumor cells are more invasive and more aggressive in acidic conditions by a cascade of cell signaling and upregulation of oncogenic gene expression. Therefore, how extracellular acidic signals are transduced to the cytoplasm and then into the nucleus is an interesting topic to many cancer researchers. In this review, we update on the recent advances in acidosis-induced tumorigenesis through the acid-sensing ion channels (ASICs) and activation of cell signaling.

Keywords

Acidosis Acidosis-induced tumorigenesis AKT/NF-κB signaling 

Notes

Funding information

This research was supported by grants from the National Natural Science Foundation of China No. 81772575 (LY) and the key project of Health Bureau of Zhejiang Province No. 2018274734 (LY), and NIH grant R01 CA154989 (YM).

References

  1. 1.
    Justus, C. R., Dong, L., & Yang, L. V. (2013). Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. [review]. Frontiers in Physiology, 4, 354.  https://doi.org/10.3389/fphys.2013.00354.Google Scholar
  2. 2.
    Damaghi, M., Wojtkowiak, J. W., & Gillies, R. J. (2013). pH sensing and regulation in cancer. [review]. Frontiers in Physiology, 4, 370.  https://doi.org/10.3389/fphys.2013.00370.Google Scholar
  3. 3.
    Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., & Seuwen, K. (2003). Proton-sensing G-protein-coupled receptors. Nature, 425(6953), 93–98.  https://doi.org/10.1038/nature01905.Google Scholar
  4. 4.
    Seuwen, K., Ludwig, M. G., & Wolf, R. M. (2006). Receptors for protons or lipid messengers or both? Journal of Receptor and Signal Transduction Research, 26(5–6), 599–610.  https://doi.org/10.1080/10799890600932220.Google Scholar
  5. 5.
    Singh, L. S., Berk, M., Oates, R., Zhao, Z., Tan, H., Jiang, Y., Zhou, A., Kirmani, K., Steinmetz, R., Lindner, D., & Xu, Y. (2007). Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. Journal of the National Cancer Institute, 99(17), 1313–1327.  https://doi.org/10.1093/jnci/djm107.Google Scholar
  6. 6.
    Hashim, A. I., Zhang, X., Wojtkowiak, J. W., Martinez, G. V., & Gillies, R. J. (2011). Imaging pH and metastasis. [Review]. NMR in Biomedicine, 24(6), 582–591.  https://doi.org/10.1002/nbm.1644.Google Scholar
  7. 7.
    Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. [Research Support, Non-U.S. Gov’t]. Cancer Research, 49(16), 4373–4384.Google Scholar
  8. 8.
    Persi, E., Duran-Frigola, M., Damaghi, M., Roush, W. R., Aloy, P., Cleveland, J. L., Gillies, R. J., & Ruppin, E. (2018). Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature Communications, 9(1), 2997.  https://doi.org/10.1038/s41467-018-05261-x.Google Scholar
  9. 9.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. [Research Support, N.I.H., Extramural Review]. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.Google Scholar
  10. 10.
    Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., & Gillies, R. J. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 73(5), 1524–1535.  https://doi.org/10.1158/0008-5472.CAN-12-2796.Google Scholar
  11. 11.
    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? [review]. Nature Reviews. Cancer, 4(11), 891–899.  https://doi.org/10.1038/nrc1478.Google Scholar
  12. 12.
    Tosco, M., Porta, C., Sironi, C., Laforenza, U., & Orsenigo, M. N. (2011). Acute and chronic acidosis influence on antioxidant equipment and transport proteins of rat jejunal enterocyte. Cell Biology International, 35(4), 345–353.  https://doi.org/10.1042/CBI20100428.Google Scholar
  13. 13.
    Riemann, A., Schneider, B., Ihling, A., Nowak, M., Sauvant, C., Thews, O., & Gekle, M. (2011). Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One, 6(7), e22445.  https://doi.org/10.1371/journal.pone.0022445.Google Scholar
  14. 14.
    Lamonte, G., Tang, X., Chen, J. L., Wu, J., Ding, C. K., Keenan, M. M., et al. (2013). Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab, 1(1), 23.  https://doi.org/10.1186/2049-3002-1-23.Google Scholar
  15. 15.
    Peppicelli, S., Bianchini, F., Contena, C., Tombaccini, D., & Calorini, L. (2013). Acidic pH via NF-kappaB favours VEGF-C expression in human melanoma cells. [Research Support, Non-U.S. Gov’t]. Clinical & Experimental Metastasis, 30(8), 957–967.  https://doi.org/10.1007/s10585-013-9595-4.Google Scholar
  16. 16.
    Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemsey, J. B., et al. (2012). Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Research, 72(16), 3938–3947.  https://doi.org/10.1158/0008-5472.CAN-11-3881.Google Scholar
  17. 17.
    Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., & Gilad, E. (2004). CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 279(26), 26991–27007.  https://doi.org/10.1074/jbc.M311838200.Google Scholar
  18. 18.
    He, B., Zhang, M., & Zhu, R. (2010). Na+/H+ exchanger blockade inhibits the expression of vascular endothelial growth factor in SGC7901 cells. [Research Support, Non-U.S. Gov’t]. Oncology Reports, 23(1), 79–87.Google Scholar
  19. 19.
    Ryder, C., McColl, K., Zhong, F., & Distelhorst, C. W. (2012). Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of Biological Chemistry, 287(33), 27863–27875.  https://doi.org/10.1074/jbc.M112.384685.Google Scholar
  20. 20.
    Thews, O., Dillenburg, W., Fellner, M., Buchholz, H. G., Bausbacher, N., Schreckenberger, M., & Rösch, F. (2010). Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 68Ga-labelled PET tracer. [Research Support, Non-U.S. Gov’t]. European Journal of Nuclear Medicine and Molecular Imaging, 37(10), 1935–1942.  https://doi.org/10.1007/s00259-010-1504-3.Google Scholar
  21. 21.
    Corbet, C., & Feron, O. (2017). Tumour acidosis: from the passenger to the driver’s seat. Nature Reviews. Cancer, 17(10), 577–593.  https://doi.org/10.1038/nrc.2017.77.Google Scholar
  22. 22.
    Bohn, T., Rapp, S., Luther, N., Klein, M., Bruehl, T. J., Kojima, N., Aranda Lopez, P., Hahlbrock, J., Muth, S., Endo, S., Pektor, S., Brand, A., Renner, K., Popp, V., Gerlach, K., Vogel, D., Lueckel, C., Arnold-Schild, D., Pouyssegur, J., Kreutz, M., Huber, M., Koenig, J., Weigmann, B., Probst, H. C., von Stebut, E., Becker, C., Schild, H., Schmitt, E., & Bopp, T. (2018). Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nature Immunology, 19, 1319–1329.  https://doi.org/10.1038/s41590-018-0226-8.Google Scholar
  23. 23.
    Rofstad, E. K., Mathiesen, B., Kindem, K., & Galappathi, K. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. [Research Support, Non-U.S. Gov’t]. Cancer Research, 66(13), 6699–6707.  https://doi.org/10.1158/0008-5472.CAN-06-0983.Google Scholar
  24. 24.
    Moellering, R. E., Black, K. C., Krishnamurty, C., Baggett, B. K., Stafford, P., Rain, M., et al. (2008). Acid treatment of melanoma cells selects for invasive phenotypes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clinical & Experimental Metastasis, 25(4), 411–425.  https://doi.org/10.1007/s10585-008-9145-7.Google Scholar
  25. 25.
    Lee, W. Y., Huang, S. C., Hsu, K. F., Tzeng, C. C., & Shen, W. L. (2008). Roles for hypoxia-regulated genes during cervical carcinogenesis: somatic evolution during the hypoxia-glycolysis-acidosis sequence. [Research Support, Non-U.S. Gov’t]. Gynecologic Oncology, 108(2), 377–384.  https://doi.org/10.1016/j.ygyno.2007.10.034.Google Scholar
  26. 26.
    Castellone, R. D., Leffler, N. R., Dong, L., & Yang, L. V. (2011). Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. [Research Support, Non-U.S. Gov’t]. Cancer Letters, 312(2), 197–208.  https://doi.org/10.1016/j.canlet.2011.08.013.Google Scholar
  27. 27.
    Matsubara, T., Diresta, G. R., Kakunaga, S., Li, D., & Healey, J. H. (2013). Additive influence of extracellular pH, oxygen tension, and pressure on invasiveness and survival of human osteosarcoma cells. Frontiers in Oncology, 3, 199.  https://doi.org/10.3389/fonc.2013.00199.Google Scholar
  28. 28.
    Xu, L., & Fidler, I. J. (2000). Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. [Research Support, U.S. Gov’t, P.H.S.]. Cancer Research, 60(16), 4610–4616.Google Scholar
  29. 29.
    Shi, Q., Le, X., Wang, B., Xiong, Q., Abbruzzese, J. L., & Xie, K. (2000). Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, P.H.S.]. Journal of Interferon & Cytokine Research, 20(11), 1023–1028.  https://doi.org/10.1089/10799900050198471.Google Scholar
  30. 30.
    Gupta, S. C., Singh, R., Pochampally, R., Watabe, K., & Mo, Y. Y. (2014). Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-kappaB pathway. Oncotarget, 5(23), 12070–12082.  https://doi.org/10.18632/oncotarget.2514.Google Scholar
  31. 31.
    Chen, B., Liu, J., Ho, T. T., Ding, X., & Mo, Y. Y. (2016). ERK-mediated NF-kappaB activation through ASIC1 in response to acidosis. Oncogenesis, 5(12), e279.  https://doi.org/10.1038/oncsis.2016.81.Google Scholar
  32. 32.
    Gupta, S. C., Singh, R., Asters, M., Liu, J., Zhang, X., Pabbidi, M. R., Watabe, K., & Mo, Y. Y. (2016). Regulation of breast tumorigenesis through acid sensors. Oncogene, 35(31), 4102–4111.  https://doi.org/10.1038/onc.2015.477.Google Scholar
  33. 33.
    Brown, N. S., & Bicknell, R. (2001). Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. [review]. Breast Cancer Research, 3(5), 323–327.Google Scholar
  34. 34.
    Wang, X., Martindale, J. L., Liu, Y., & Holbrook, N. J. (1998). The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. The Biochemical Journal, 333(Pt 2), 291–300.Google Scholar
  35. 35.
    Brown, N. S., Jones, A., Fujiyama, C., Harris, A. L., & Bicknell, R. (2000). Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. [Research Support, Non-U.S. Gov’t]. Cancer Research, 60(22), 6298–6302.Google Scholar
  36. 36.
    Pelicano, H., Lu, W., Zhou, Y., Zhang, W., Chen, Z., Hu, Y., & Huang, P. (2009). Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. [Research Support, N.I.H., Extramural]. Cancer Research, 69(6), 2375–2383.  https://doi.org/10.1158/0008-5472.CAN-08-3359.Google Scholar
  37. 37.
    Gough, D. R., & Cotter, T. G. (2011). Hydrogen peroxide: a Jekyll and Hyde signalling molecule. [Research Support, Non-U.S. Gov’t Review]. Cell Death & Disease, 2, e213.  https://doi.org/10.1038/cddis.2011.96.Google Scholar
  38. 38.
    Gupta, S. C., Sundaram, C., Reuter, S., & Aggarwal, B. B. (2010). Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Biochimica et Biophysica Acta, 1799(10–12), 775–787.  https://doi.org/10.1016/j.bbagrm.2010.05.004.Google Scholar
  39. 39.
    Aggarwal, B. B. (2004). Nuclear factor-kappaB: the enemy within. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review]. Cancer Cell, 6(3), 203–208.  https://doi.org/10.1016/j.ccr.2004.09.003.Google Scholar
  40. 40.
    Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., & Lazdunski, M. (1997). A proton-gated cation channel involved in acid-sensing. [Research Support, Non-U.S. Gov’t]. Nature, 386(6621), 173–177.  https://doi.org/10.1038/386173a0.Google Scholar
  41. 41.
    Wemmie, J. A., Chen, J., Askwith, C. C., Hruska-Hageman, A. M., Price, M. P., Nolan, B. C., Yoder, P. G., Lamani, E., Hoshi, T., Freeman, J. H., Jr., & Welsh, M. J. (2002). The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. [In Vitro Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Neuron, 34(3), 463–477.Google Scholar
  42. 42.
    Wemmie, J. A., Taugher, R. J., & Kreple, C. J. (2013). Acid-sensing ion channels in pain and disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Reviews. Neuroscience, 14(7), 461–471.  https://doi.org/10.1038/nrn3529.Google Scholar
  43. 43.
    Mazzuca, M., Heurteaux, C., Alloui, A., Diochot, S., Baron, A., Voilley, N., Blondeau, N., Escoubas, P., Gélot, A., Cupo, A., Zimmer, A., Zimmer, A. M., Eschalier, A., & Lazdunski, M. (2007). A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 10(8), 943–945.  https://doi.org/10.1038/nn1940.Google Scholar
  44. 44.
    Wemmie, J. A., Askwith, C. C., Lamani, E., Cassell, M. D., Freeman, J. H., Jr., & Welsh, M. J. (2003). Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. The Journal of Neuroscience, 23(13), 5496–5502.Google Scholar
  45. 45.
    Schaefer, L., Sakai, H., Mattei, M., Lazdunski, M., & Lingueglia, E. (2000). Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. [Research Support, Non-U.S. Gov’t]. FEBS Letters, 471(2–3), 205–210.Google Scholar
  46. 46.
    Chu, X. P., & Xiong, Z. G. (2012). Physiological and pathological functions of acid-sensing ion channels in the central nervous system. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Current Drug Targets, 13(2), 263–271.Google Scholar
  47. 47.
    Gonzales, E. B., Kawate, T., & Gouaux, E. (2009). Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature, 460(7255), 599–604.  https://doi.org/10.1038/nature08218.Google Scholar
  48. 48.
    Jasti, J., Furukawa, H., Gonzales, E. B., & Gouaux, E. (2007). Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature, 449(7160), 316–323.  https://doi.org/10.1038/nature06163.Google Scholar
  49. 49.
    Sherwood, T. W., Lee, K. G., Gormley, M. G., & Askwith, C. C. (2011). Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of Neuroscience, 31(26), 9723–9734.  https://doi.org/10.1523/JNEUROSCI.1665-11.2011.Google Scholar
  50. 50.
    Sluka, K. A., Rasmussen, L. A., Edgar, M. M., O'Donnell, J. M., Walder, R. Y., Kolker, S. J., Boyle, D. L., & Firestein, G. S. (2013). Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. Arthritis and Rheumatism, 65(5), 1194–1202.  https://doi.org/10.1002/art.37862.Google Scholar
  51. 51.
    Liu, L., Zhang, R., Liu, K., Zhou, H., Yang, X., Liu, X., Tang, M., Su, J., & Dong, Q. (2009). Tissue kallikrein protects cortical neurons against in vitro ischemia-acidosis/reperfusion-induced injury through the ERK1/2 pathway. [Research Support, Non-U.S. Gov’t]. Experimental Neurology, 219(2), 453–465.  https://doi.org/10.1016/j.expneurol.2009.06.021.Google Scholar
  52. 52.
    Matthews, H., Ranson, M., & Kelso, M. J. (2011). Anti-tumour/metastasis effects of the potassium-sparing diuretic amiloride: an orally active anti-cancer drug waiting for its call-of-duty? [review]. International Journal of Cancer, 129(9), 2051–2061.  https://doi.org/10.1002/ijc.26156.Google Scholar
  53. 53.
    Diochot, S., Baron, A., Rash, L. D., Deval, E., Escoubas, P., Scarzello, S., Salinas, M., & Lazdunski, M. (2004). A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. [Research Support, non-U.S. Gov't]. The EMBO Journal, 23(7), 1516–1525.  https://doi.org/10.1038/sj.emboj.7600177.Google Scholar
  54. 54.
    Bohlen, C. J., Chesler, A. T., Sharif-Naeini, R., Medzihradszky, K. F., Zhou, S., King, D., Sánchez, E. E., Burlingame, A. L., Basbaum, A. I., & Julius, D. (2011). A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature, 479(7373), 410–414.  https://doi.org/10.1038/nature10607.Google Scholar
  55. 55.
    Baconguis, I., Bohlen, C. J., Goehring, A., Julius, D., & Gouaux, E. (2014). X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na(+)-selective channel. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell, 156(4), 717–729.  https://doi.org/10.1016/j.cell.2014.01.011.Google Scholar
  56. 56.
    Chen, X., Kalbacher, H., & Grunder, S. (2005). The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. [Research Support, Non-U.S. Gov’t]. The Journal of General Physiology, 126(1), 71–79.  https://doi.org/10.1085/jgp.200509303.Google Scholar
  57. 57.
    Chung, W. S., Farley, J. M., Swenson, A., Barnard, J. M., Hamilton, G., Chiposi, R., & Drummond, H. A. (2010). Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Cell Physiology, 298(5), C1198–C1208.  https://doi.org/10.1152/ajpcell.00511.2009.Google Scholar
  58. 58.
    Jahr, H., van Driel, M., van Osch, G. J., Weinans, H., & van Leeuwen, J. P. (2005). Identification of acid-sensing ion channels in bone. Biochemical and Biophysical Research Communications, 337(1), 349–354.  https://doi.org/10.1016/j.bbrc.2005.09.054.Google Scholar
  59. 59.
    Lin, Y. C., Liu, Y. C., Huang, Y. Y., & Lien, C. C. (2010). High-density expression of Ca2+−permeable ASIC1a channels in NG2 glia of rat hippocampus. [Research Support, non-U.S. Gov’t]. PLoS One, 5(9), doi: https://doi.org/10.1371/journal.pone.0012665.
  60. 60.
    Berdiev, B. K., Xia, J., McLean, L. A., Markert, J. M., Gillespie, G. Y., Mapstone, T. B., Naren, A. P., Jovov, B., Bubien, J. K., Ji, H. L., Fuller, C. M., Kirk, K. L., & Benos, D. J. (2003). Acid-sensing ion channels in malignant gliomas. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 278(17), 15023–15034.  https://doi.org/10.1074/jbc.M300991200.Google Scholar
  61. 61.
    Bubien, J. K., Keeton, D. A., Fuller, C. M., Gillespie, G. Y., Reddy, A. T., Mapstone, T. B., & Benos, D. J. (1999). Malignant human gliomas express an amiloride-sensitive Na+ conductance. [Research Support, U.S. Gov’t, P.H.S.]. The American Journal of Physiology, 276(6 Pt 1), C1405–C1410.Google Scholar
  62. 62.
    Kapoor, N., Bartoszewski, R., Qadri, Y. J., Bebok, Z., Bubien, J. K., Fuller, C. M., & Benos, D. J. (2009). Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 284(36), 24526–24541.  https://doi.org/10.1074/jbc.M109.037390.Google Scholar
  63. 63.
    Vila-Carriles, W. H., Kovacs, G. G., Jovov, B., Zhou, Z. H., Pahwa, A. K., Colby, G., Esimai, O., Gillespie, G. Y., Mapstone, T. B., Markert, J. M., Fuller, C. M., Bubien, J. K., & Benos, D. J. (2006). Surface expression of ASIC2 inhibits the amiloride-sensitive current and migration of glioma cells. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 281(28), 19220–19232.  https://doi.org/10.1074/jbc.M603100200.Google Scholar
  64. 64.
    Zhou, Z. H., Song, J. W., Li, W., Liu, X., Cao, L., Wan, L. M., Tan, Y. X., Ji, S. P., Liang, Y. M., & Gong, F. (2017). The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. Journal of Experimental & Clinical Cancer Research, 36(1), 130.  https://doi.org/10.1186/s13046-017-0599-9.Google Scholar
  65. 65.
    Jacobs, M. D., & Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. [Research Support, Non-U.S. Gov’t]. Cell, 95(6), 749–758.Google Scholar
  66. 66.
    Riemann, A., Schneider, B., Gundel, D., Stock, C., Gekle, M., & Thews, O. (2016). Acidosis promotes metastasis formation by enhancing tumor cell motility. Advances in Experimental Medicine and Biology, 876, 215–220.  https://doi.org/10.1007/978-1-4939-3023-4_27.Google Scholar
  67. 67.
    Corbet, C., Pinto, A., Martherus, R., Santiago de Jesus, J. P., Polet, F., & Feron, O. (2016). Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metabolism, 24(2), 311–323.  https://doi.org/10.1016/j.cmet.2016.07.003.Google Scholar
  68. 68.
    Teixeira, J., Basit, F., Swarts, H. G., Forkink, M., Oliveira, P. J., Willems, P., et al. (2018). Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biology, 15, 394–404.  https://doi.org/10.1016/j.redox.2017.12.018.Google Scholar
  69. 69.
    Morgan, M. J., & Liu, Z. G. (2011). Crosstalk of reactive oxygen species and NF-kappaB signaling. [Research Support, N.I.H., Intramural Review]. Cell Research, 21(1), 103–115.  https://doi.org/10.1038/cr.2010.178.Google Scholar
  70. 70.
    Khan, K. H., Yap, T. A., Yan, L., & Cunningham, D. (2013). Targeting the PI3K-AKT-mTOR signaling network in cancer. [Research Support, Non-U.S. Gov’t Review]. Chinese Journal of Cancer, 32(5), 253–265.  https://doi.org/10.5732/cjc.013.10057.Google Scholar
  71. 71.
    Cantley, L. C., & Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. [Review]. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4240–4245.Google Scholar
  72. 72.
    Papa, A., Wan, L., Bonora, M., Salmena, L., Song, M. S., Hobbs, R. M., Lunardi, A., Webster, K., Ng, C., Newton, R. H., Knoblauch, N., Guarnerio, J., Ito, K., Turka, L. A., Beck, A. H., Pinton, P., Bronson, R. T., Wei, W., & Pandolfi, P. P. (2014). Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell, 157(3), 595–610.  https://doi.org/10.1016/j.cell.2014.03.027.Google Scholar
  73. 73.
    Martinez, D., Vermeulen, M., Trevani, A., Ceballos, A., Sabatte, J., Gamberale, R., Alvarez, M. E., Salamone, G., Tanos, T., Coso, O. A., & Geffner, J. (2006). Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. Journal of Immunology, 176(2), 1163–1171.Google Scholar
  74. 74.
    Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin, M., Ponomarev, V., Gerald, W. L., Blasberg, R., & Massagué, J. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. The Journal of Clinical Investigation, 115(1), 44–55.Google Scholar
  75. 75.
    Bianchi, L., & Driscoll, M. (2002). Protons at the gate: DEG/ENaC ion channels help us feel and remember. [Review]. Neuron, 34(3), 337–340.Google Scholar
  76. 76.
    Sakmann, B., & Neher, E. (1984). Patch clamp techniques for studying ionic channels in excitable membranes. [Research Support, Non-U.S. Gov’t Review]. Annual Review of Physiology, 46, 455–472.  https://doi.org/10.1146/annurev.ph.46.030184.002323.Google Scholar
  77. 77.
    Rodriguez-Escudero, I., Oliver, M. D., Andres-Pons, A., Molina, M., Cid, V. J., & Pulido, R. (2011). A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. [Research Support, Non-U.S. Gov’t]. Human Molecular Genetics, 20(21), 4132–4142.  https://doi.org/10.1093/hmg/ddr337.Google Scholar
  78. 78.
    Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. [Research Support, N.I.H., Extramural Review]. Oncogene, 27(41), 5497–5510.  https://doi.org/10.1038/onc.2008.245.Google Scholar
  79. 79.
    Rooj, A. K., McNicholas, C. M., Bartoszewski, R., Bebok, Z., Benos, D. J., & Fuller, C. M. (2012). Glioma-specific cation conductance regulates migration and cell cycle progression. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 287(6), 4053–4065.  https://doi.org/10.1074/jbc.M111.311688.Google Scholar
  80. 80.
    Benarroch, E. E. (2014). Acid-sensing cation channels: structure, function, and pathophysiologic implications. Neurology, 82(7), 628–635.  https://doi.org/10.1212/WNL.0000000000000134.Google Scholar
  81. 81.
    Vassalli, J. D., & Belin, D. (1987). Amiloride selectively inhibits the urokinase-type plasminogen activator. [In Vitro Research Support, Non-U.S. Gov’t]. FEBS Letters, 214(1), 187–191.Google Scholar
  82. 82.
    Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? [Research Support, N.I.H., Extramural Review]. Nature Reviews. Drug Discovery, 8(7), 579–591.  https://doi.org/10.1038/nrd2803.Google Scholar
  83. 83.
    Chao, M., Wu, H., Jin, K., Li, B., Wu, J., Zhang, G., Yang G., Hu X. (2016). A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. Elife, 5, doi: https://doi.org/10.7554/eLife.15691, A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis, 5.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhouP.R. China
  2. 2.Cancer Institute and Department of Pharmacology/ToxicologyUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations