Advertisement

Cancer and Metastasis Reviews

, Volume 38, Issue 1–2, pp 93–101 | Cite as

Extracellular acidity and increased exosome release as key phenotypes of malignant tumors

  • Mariantonia Logozzi
  • Enrico Spugnini
  • Davide Mizzoni
  • Rossella Di Raimo
  • Stefano FaisEmail author
Article

Abstract

The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating “liquid biopsies”. The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.

Keywords

Acidity Exosomes Liquid biopsy Microenvironment NTA (nanoparticle tracking analysis) Biomarkers 

Notes

Funding information

This work was supported by Regione Lazio FILAS (grant number RU 2014-2041 FascJ9L).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Taylor, S., Spugnini, E. P., Assaraf, Y. G., Azzarito, T., Rauch, C., & Fais, S. (2015). Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resistance Updates, 23, 69–78.  https://doi.org/10.1016/j.drup.2015.08.004.CrossRefPubMedGoogle Scholar
  2. 2.
    Spugnini, E. P., Sonveaux, P., Stock, C., Perez-Sayans, M., De Milito, A., Avnet, S., … Fais, S. (2015). Proton channels and exchangers in cancer. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(10), 2715–2726. doi: https://doi.org/10.1016/j.bbamem.2014.10.015.
  3. 3.
    Spugnini, E., & Fais, S. (2017). Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Seminars in Cancer Biology, 43, 111–118.  https://doi.org/10.1016/j.semcancer.2017.01.003.CrossRefPubMedGoogle Scholar
  4. 4.
    Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–1454.  https://doi.org/10.1093/jnci/djm135.CrossRefPubMedGoogle Scholar
  5. 5.
    Fais, S., Venturi, G., & Gatenby, B. (2014). Microenvironmental acidosis in carcinogenesis and metastases: New strategies in prevention and therapy. Cancer and Metastasis Reviews, 33(4), 1095–1108.  https://doi.org/10.1007/s10555-014-9531-3.CrossRefPubMedGoogle Scholar
  6. 6.
    Gillies, R. J., & Gatenby, R. A. (2015). Metabolism and its sequelae in Cancer evolution and therapy. The Cancer Journal, 21(2), 88–96.  https://doi.org/10.1097/PPO.0000000000000102.CrossRefPubMedGoogle Scholar
  7. 7.
    Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: A perfect storm for cancer progression. Nature Reviews Cancer, 11(9), 671–677.  https://doi.org/10.1038/nrc3110.CrossRefPubMedGoogle Scholar
  8. 8.
    Reshkin, S. J., Cardone, R. A., & Harguindey, S. (2013). Na+-H+ exchanger, pH regulation and cancer. Recent Patents on Anti-Cancer Drug Discovery, 8(1), 85–99.CrossRefGoogle Scholar
  9. 9.
    Amith, S. R., & Fliegel, L. (2013). Regulation of the Na+/H+ exchanger (NHE1) in breast Cancer metastasis. Cancer Research, 73(4), 1259–1264.  https://doi.org/10.1158/0008-5472.CAN-12-4031.CrossRefPubMedGoogle Scholar
  10. 10.
    White, K. A., Grillo-Hill, B. K., & Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science, 130(4), 663–669.  https://doi.org/10.1242/jcs.195297.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vaupel, P., & Multhoff, G. (2017). Accomplices of the hypoxic tumor microenvironment compromising antitumor immunity: Adenosine, lactate, acidosis, vascular endothelial growth factor, potassium ions, and phosphatidylserine. Frontiers in Immunology, 8, 1887.  https://doi.org/10.3389/fimmu.2017.01887.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Multhoff, G., Radons, J., & Vaupel, P. (2014). Critical role of aberrant angiogenesis in the development of tumor hypoxia and associated Radioresistance. Cancers, 6(2), 813–828.  https://doi.org/10.3390/cancers6020813.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mayer, A., & Vaupel, P. (2013). Hypoxia, lactate accumulation, and acidosis: Siblings or accomplices driving tumor progression and resistance to therapy? In S. Van Huffel, G. Naulaers, A. Caicedo, D. F. Bruley, & D. K. Harrison (Eds.), Oxygen transport to tissue XXXV (Vol. 789, pp. 203–209). New York, NY: Springer New York.  https://doi.org/10.1007/978-1-4614-7411-1_28.CrossRefGoogle Scholar
  14. 14.
    Vaupel, P., & Multhoff, G. (2018). Hypoxia-/HIF-1α-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. In O. Thews, J. C. LaManna, & D. K. Harrison (Eds.), Oxygen transport to tissue XL (Vol. 1072, pp. 171–175). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-91287-5_27.CrossRefGoogle Scholar
  15. 15.
    Parks, S. K., & Pouysségur, J. (2017). Targeting pH regulating proteins for cancer therapy–Progress and limitations. Seminars in Cancer Biology, 43, 66–73.  https://doi.org/10.1016/j.semcancer.2017.01.007.CrossRefPubMedGoogle Scholar
  16. 16.
    Granja, S., Tavares-Valente, D., Queirós, O., & Baltazar, F. (2017). Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Seminars in Cancer Biology, 43, 17–34.  https://doi.org/10.1016/j.semcancer.2016.12.003.CrossRefPubMedGoogle Scholar
  17. 17.
    Pathria, G., Scott, D. A., Feng, Y., Sang Lee, J., Fujita, Y., Zhang, G., Sahu, A. D., Ruppin, E., Herlyn, M., Osterman, A. L., & Ronai, Z. A. (2018). Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. The EMBO Journal, 37(20), e99735.  https://doi.org/10.15252/embj.201899735.CrossRefPubMedGoogle Scholar
  18. 18.
    Masson, N., & Ratcliffe, P. J. (2014). Hypoxia signaling pathways in cancer metabolism: The importance of co-selecting interconnected physiological pathways. Cancer & Metabolism, 2(1), 3.  https://doi.org/10.1186/2049-3002-2-3.CrossRefGoogle Scholar
  19. 19.
    Tiburcio, P. D., Choi, H., & Huang, L. E. (2014). Complex role of HIF in cancer: The known, the unknown and the unexpected. Hypoxia (Auckland, N.Z.), 2, 59–70.  https://doi.org/10.2147/HP.S50651.CrossRefGoogle Scholar
  20. 20.
    Semenza, G. L. (2013). HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. Journal of Clinical Investigation, 123(9), 3664–3671.  https://doi.org/10.1172/JCI67230.CrossRefPubMedGoogle Scholar
  21. 21.
    Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., … Dang, C. V. (1997). C-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6658–6663.Google Scholar
  22. 22.
    Stubbs, M., & Griffiths, J. R. (2010). The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Advances in Enzyme Regulation, 50(1), 44–55.  https://doi.org/10.1016/j.advenzreg.2009.10.027.CrossRefPubMedGoogle Scholar
  23. 23.
    Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nature Reviews Cancer, 18(9), 576–585.  https://doi.org/10.1038/s41568-018-0030-7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Iessi, E., Logozzi, M., Mizzoni, D., Di Raimo, R., Supuran, C., & Fais, S. (2017). Rethinking the combination of proton exchanger inhibitors in Cancer therapy. Metabolites, 8(1), 2.  https://doi.org/10.3390/metabo8010002.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Fais, S. (2016). A nonmainstream approach against cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6), 882–889.  https://doi.org/10.3109/14756366.2016.1156105.CrossRefPubMedGoogle Scholar
  26. 26.
    Lozupone, F., & Fais, S. (2015). Cancer cell cannibalism: A primeval option to survive. Current Molecular Medicine, 15(9), 836–841.CrossRefGoogle Scholar
  27. 27.
    Fais, S., & Overholtzer, M. (2018). Cell-in-cell phenomena, cannibalism, and autophagy: Is there a relationship? Cell Death & Disease, 9(2), 95.  https://doi.org/10.1038/s41419-017-0111-7.CrossRefGoogle Scholar
  28. 28.
    Fais, S., & Overholtzer, M. (2018). Cell-in-cell phenomena in cancer. Nature Reviews Cancer, 18(12), 758–766.  https://doi.org/10.1038/s41568-018-0073-9.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao, H., Achreja, A., Iessi, E., Logozzi, M., Mizzoni, D., Di Raimo, R., et al. (2018). The key role of extracellular vesicles in the metastatic process. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1869(1), 64–77.  https://doi.org/10.1016/j.bbcan.2017.11.005.CrossRefGoogle Scholar
  30. 30.
    Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., García-Santos, G., Ghajar, C. M., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., Brady, M. S., Wolchok, J. D., Chapman, P. B., Kang, Y., Bromberg, J., & Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891.  https://doi.org/10.1038/nm.2753.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nogués, L., Benito-Martin, A., Hergueta-Redondo, M., & Peinado, H. (2018). The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Molecular Aspects of Medicine, 60, 15–26.  https://doi.org/10.1016/j.mam.2017.11.012.CrossRefPubMedGoogle Scholar
  32. 32.
    Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M., & Lyden, D. (2017). Pre-metastatic niches: Organ-specific homes for metastases. Nature Reviews Cancer, 17(5), 302–317.  https://doi.org/10.1038/nrc.2017.6.CrossRefPubMedGoogle Scholar
  33. 33.
    Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in Cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 30(6), 836–848.  https://doi.org/10.1016/j.ccell.2016.10.009.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Brinton, L. T., Sloane, H. S., Kester, M., & Kelly, K. A. (2015). Formation and role of exosomes in cancer. Cellular and Molecular Life Sciences, 72(4), 659–671.  https://doi.org/10.1007/s00018-014-1764-3.CrossRefPubMedGoogle Scholar
  35. 35.
    Spugnini, E., Logozzi, M., Di Raimo, R., Mizzoni, D., & Fais, S. (2018). A role of tumor-released exosomes in paracrine dissemination and metastasis. International Journal of Molecular Sciences, 19(12), 3968.  https://doi.org/10.3390/ijms19123968.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Logozzi, M., Mizzoni, D., Angelini, D., Di Raimo, R., Falchi, M., Battistini, L., & Fais, S. (2018). Microenvironmental pH and exosome levels interplay in human Cancer cell lines of different Histotypes. Cancers, 10(10), 370.  https://doi.org/10.3390/cancers10100370.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fais, S., Logozzi, M., Lugini, L., Federici, C., Azzarito, T., Zarovni, N., & Chiesi, A. (2013). Exosomes: The ideal nanovectors for biodelivery. Biological Chemistry, 394(1), 1–15.  https://doi.org/10.1515/hsz-2012-0236.CrossRefPubMedGoogle Scholar
  38. 38.
    Yáñez-Mó, M., Siljander, P. R.-M., Andreu, Z., Bedina Zavec, A., Borràs, F. E., Buzas, E. I., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4(1), 27066.  https://doi.org/10.3402/jev.v4.27066.CrossRefPubMedGoogle Scholar
  39. 39.
    Luan, X., Sansanaphongpricha, K., Myers, I., Chen, H., Yuan, H., & Sun, D. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), 754–763.  https://doi.org/10.1038/aps.2017.12.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ohno, S., Ishikawa, A., & Kuroda, M. (2013). Roles of exosomes and microvesicles in disease pathogenesis. Advanced Drug Delivery Reviews, 65(3), 398–401.  https://doi.org/10.1016/j.addr.2012.07.019.CrossRefPubMedGoogle Scholar
  41. 41.
    Iraci, N., Leonardi, T., Gessler, F., Vega, B., & Pluchino, S. (2016). Focus on extracellular vesicles: Physiological role and Signalling properties of extracellular membrane vesicles. International Journal of Molecular Sciences, 17(2), 171.  https://doi.org/10.3390/ijms17020171.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lodillinsky, C., Podsypanina, K., & Chavrier, P. (2016). Social networking in tumor cell communities is associated with increased aggressiveness. IntraVital, 5(1), e1112476.  https://doi.org/10.1080/21659087.2015.1112476.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., … Fais, S. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. Journal of Biological Chemistry, 284(49), 34211–34222. doi: https://doi.org/10.1074/jbc.M109.041152.
  44. 44.
    Naito, Y., Yoshioka, Y., Yamamoto, Y., & Ochiya, T. (2017). How cancer cells dictate their microenvironment: Present roles of extracellular vesicles. Cellular and Molecular Life Sciences, 74(4), 697–713.  https://doi.org/10.1007/s00018-016-2346-3.CrossRefPubMedGoogle Scholar
  45. 45.
    Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of MicroRNAs in living cells. Journal of Biological Chemistry, 285(23), 17442–17452.  https://doi.org/10.1074/jbc.M110.107821.CrossRefPubMedGoogle Scholar
  46. 46.
    Cruz, L., Romero, J. A. A., Iglesia, R. P., & Lopes, M. H. (2018). Extracellular vesicles: Decoding a new language for cellular communication in early embryonic development. Frontiers in Cell and Developmental Biology, 6, 94.  https://doi.org/10.3389/fcell.2018.00094.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gallala, H. D., & Sandhoff, K. (2011). Biological function of the cellular lipid BMP—BMP as a key activator for cholesterol sorting and membrane digestion. Neurochemical Research, 36(9), 1594–1600.  https://doi.org/10.1007/s11064-010-0337-6.CrossRefPubMedGoogle Scholar
  48. 48.
    Camussi, G., Deregibus, M.-C., Bruno, S., Grange, C., Fonsato, V., & Tetta, C. (2011). Exosome/microvesicle-mediated epigenetic reprogramming of cells. American Journal of Cancer Research, 1(1), 98–110.PubMedGoogle Scholar
  49. 49.
    Antonyak, M. A., & Cerione, R. A. (2014). Microvesicles as mediators of intercellular communication in Cancer. In M. Robles-Flores (Ed.), Cancer Cell Signaling (Vol. 1165, pp. 147–173). New York, NY: Springer New York.  https://doi.org/10.1007/978-1-4939-0856-1_11.CrossRefGoogle Scholar
  50. 50.
    Leal, A. C., Mizurini, D. M., Gomes, T., Rochael, N. C., Saraiva, E. M., Dias, M. S., Werneck, C. C., Sielski, M. S., Vicente, C. P., & Monteiro, R. Q. (2017). Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of Cancer-associated thrombosis. Scientific Reports, 7(1), 6438.  https://doi.org/10.1038/s41598-017-06893-7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jiménez-Alcázar, M., Kim, N., & Fuchs, T. A. (2017). Circulating extracellular DNA: Cause or consequence of thrombosis? Seminars in Thrombosis and Hemostasis, 43(6), 553–561.  https://doi.org/10.1055/s-0036-1597284.CrossRefPubMedGoogle Scholar
  52. 52.
    Cui, J., Li, Q., Luo, M., Zhong, Z., Zhou, S., Jiang, L., Shen, N., Geng, Z., Cheng, H., Meng, L., Yi, S., Sun, H., Wu, F., Zhu, Z., Zou, P., You, Y., Guo, A. Y., & Zhu, X. (2018). Leukemia cell-derived microvesicles induce T cell exhaustion via miRNA delivery. Oncoimmunology, 7(7), e1448330.  https://doi.org/10.1080/2162402X.2018.1448330.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Almiñana, C., Tsikis, G., Labas, V., Uzbekov, R., da Silveira, J. C., Bauersachs, S., & Mermillod, P. (2018). Deciphering the oviductal extracellular vesicles content across the estrous cycle: Implications for the gametes-oviduct interactions and the environment of the potential embryo. BMC Genomics, 19(1), 622.  https://doi.org/10.1186/s12864-018-4982-5.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Felicetti, F., De Feo, A., Coscia, C., Puglisi, R., Pedini, F., Pasquini, L., … Carè, A. (2016). Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. Journal of Translational Medicine, 14, 56. doi: https://doi.org/10.1186/s12967-016-0811-2.
  55. 55.
    Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.  https://doi.org/10.1038/ncb1596.CrossRefPubMedGoogle Scholar
  56. 56.
    Hannafon, B. N., & Ding, W.-Q. (2013). Intercellular communication by exosome-derived microRNAs in cancer. International Journal of Molecular Sciences, 14(7), 14240–14269.  https://doi.org/10.3390/ijms140714240.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: Small particle, big player. Journal of Hematology & Oncology, 8, 83.  https://doi.org/10.1186/s13045-015-0181-x.CrossRefGoogle Scholar
  58. 58.
    Whiteside, T. L. (2016). Tumor-derived exosomes and their role in Cancer progression. Advances in Clinical Chemistry, 74, 103–141.  https://doi.org/10.1016/bs.acc.2015.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Guo, W., Gao, Y., Li, N., Shao, F., Wang, C., Wang, P., Yang, Z., Li, R., & He, J. (2017). Exosomes: New players in cancer (review). Oncology Reports, 38(2), 665–675.  https://doi.org/10.3892/or.2017.5714.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang, Z., Chen, J.-Q., Liu, J.-L., & Tian, L. (2016). Exosomes in tumor microenvironment: Novel transporters and biomarkers. Journal of Translational Medicine, 14(1), 297.  https://doi.org/10.1186/s12967-016-1056-9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kahlert, C., & Kalluri, R. (2013). Exosomes in tumor microenvironment influence cancer progression and metastasis. Journal of Molecular Medicine (Berlin, Germany), 91(4), 431–437.  https://doi.org/10.1007/s00109-013-1020-6.CrossRefGoogle Scholar
  62. 62.
    Jiang, X., Hu, S., Liu, Q., Qian, C., Liu, Z., & Luo, D. (2017). Exosomal microRNA remodels the tumor microenvironment. PeerJ, 5, e4196.  https://doi.org/10.7717/peerj.4196.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Federici, C., Petrucci, F., Caimi, S., Cesolini, A., Logozzi, M., Borghi, M., D'Ilio, S., Lugini, L., Violante, N., Azzarito, T., Majorani, C., Brambilla, D., & Fais, S. (2014). Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One, 9(2), e88193.  https://doi.org/10.1371/journal.pone.0088193.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Luciani, F., Spada, M., De Milito, A., Molinari, A., Rivoltini, L., Montinaro, A., et al. (2004). Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. Journal of the National Cancer Institute, 96(22), 1702–1713.  https://doi.org/10.1093/jnci/djh305.CrossRefPubMedGoogle Scholar
  65. 65.
    De Milito, A., Canese, R., Marino, M. L., Borghi, M., Iero, M., Villa, A., et al. (2010). pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. International Journal of Cancer, 127(1), 207–219.  https://doi.org/10.1002/ijc.25009.CrossRefPubMedGoogle Scholar
  66. 66.
    Azzarito, T., Venturi, G., Cesolini, A., & Fais, S. (2015). Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma. Cancer Letters, 356(2), 697–703.  https://doi.org/10.1016/j.canlet.2014.10.017.CrossRefPubMedGoogle Scholar
  67. 67.
    Federici, C., Lugini, L., Marino, M. L., Carta, F., Iessi, E., Azzarito, T., Supuran, C. T., & Fais, S. (2016). Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup1), 119–125.  https://doi.org/10.1080/14756366.2016.1177525.CrossRefPubMedGoogle Scholar
  68. 68.
    Canitano, A., Iessi, E., Spugnini, E. P., Federici, C., & Fais, S. (2016). Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma. Cancer Letters, 376(2), 278–283.  https://doi.org/10.1016/j.canlet.2016.04.015.CrossRefPubMedGoogle Scholar
  69. 69.
    Logozzi, M., Angelini, D. F., Iessi, E., Mizzoni, D., Di Raimo, R., Federici, C., … Fais, S. (2017). Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Letters, 403, 318–329. doi: https://doi.org/10.1016/j.canlet.2017.06.036.
  70. 70.
    Oosthuyzen, W., Sime, N. E. L., Ivy, J. R., Turtle, E. J., Street, J. M., Pound, J., et al. (2013). Quantification of human urinary exosomes by nanoparticle tracking analysis: Nanoparticle tracking analysis and exosomes. The Journal of Physiology, 591(23), 5833–5842.  https://doi.org/10.1113/jphysiol.2013.264069.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang, W., Peng, P., Kuang, Y., Yang, J., Cao, D., You, Y., & Shen, K. (2016). Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(3), 4213–4221.  https://doi.org/10.1007/s13277-015-4105-8.CrossRefGoogle Scholar
  72. 72.
    Hisey, C. L., Dorayappan, K. D. P., Cohn, D. E., Selvendiran, K., & Hansford, D. J. (2018). Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes. Lab on a Chip, 18(20), 3144–3153.  https://doi.org/10.1039/c8lc00834e.CrossRefPubMedGoogle Scholar
  73. 73.
    Ren, J., Ding, L., Zhang, D., Shi, G., Xu, Q., Shen, S., Wang, Y., Wang, T., & Hou, Y. (2018). Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 8(14), 3932–3948.  https://doi.org/10.7150/thno.25541.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., et al. (2012). Modulation of microenvironment acidity reverses Anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Research, 72(11), 2746–2756.  https://doi.org/10.1158/0008-5472.CAN-11-1272.CrossRefPubMedGoogle Scholar
  75. 75.
    Lugini, L., Valtieri, M., Federici, C., Cecchetti, S., Meschini, S., Condello, M., Signore, M., & Fais, S. (2016). Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget, 7(31), 50086–50098.  https://doi.org/10.18632/oncotarget.10574.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li, X., Seebacher, N. A., Hornicek, F. J., Xiao, T., & Duan, Z. (2018). Application of liquid biopsy in bone and soft tissue sarcomas: Present and future. Cancer Letters, 439, 66–77.  https://doi.org/10.1016/j.canlet.2018.09.012.CrossRefPubMedGoogle Scholar
  77. 77.
    Miki, Y., Yashiro, M., Okuno, T., Kuroda, K., Togano, S., Hirakawa, K., & Ohira, M. (2018). Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS One, 13(9), e0202956.  https://doi.org/10.1371/journal.pone.0202956.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kobayashi, M., Sawada, K., Nakamura, K., Yoshimura, A., Miyamoto, M., Shimizu, A., Ishida, K., Nakatsuka, E., Kodama, M., Hashimoto, K., Mabuchi, S., & Kimura, T. (2018). Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. Journal of Ovarian Research, 11(1), 81.  https://doi.org/10.1186/s13048-018-0458-0.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zheng, H., Zhan, Y., Liu, S., Lu, J., Luo, J., Feng, J., & Fan, S. (2018). The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. Journal of experimental & clinical cancer research: CR, 37(1), 226.  https://doi.org/10.1186/s13046-018-0901-5.CrossRefGoogle Scholar
  80. 80.
    Hu, C., Chen, M., Jiang, R., Guo, Y., Wu, M., & Zhang, X. (2018). Exosome-related tumor microenvironment. Journal of Cancer, 9(17), 3084–3092.  https://doi.org/10.7150/jca.26422.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Wang, J., Zhang, H., Zhou, X., Wang, T., Zhang, J., Zhu, W., Zhu, H., & Cheng, W. (2018). Five serum-based miRNAs were identified as potential diagnostic biomarkers in gastric cardia adenocarcinoma. Cancer Biomarkers: Section A of Disease Markers, 23(2), 193–203.  https://doi.org/10.3233/CBM-181258.CrossRefPubMedGoogle Scholar
  82. 82.
    Barbagallo, C., Brex, D., Caponnetto, A., Cirnigliaro, M., Scalia, M., Magnano, A., Caltabiano, R., Barbagallo, D., Biondi, A., Cappellani, A., Basile, F., di Pietro, C., Purrello, M., & Ragusa, M. (2018). LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Molecular Therapy. Nucleic Acids, 12, 229–241.  https://doi.org/10.1016/j.omtn.2018.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Xiao, Y., Li, Y., Yuan, Y., Liu, B., Pan, S., Liu, Q., et al. (2018). The potential of exosomes derived from colorectal cancer as a biomarker. Clinica Chimica Acta; International Journal of Clinical Chemistry, 490, 186–193.  https://doi.org/10.1016/j.cca.2018.09.007.CrossRefPubMedGoogle Scholar
  84. 84.
    Shao, Y., Chen, T., Zheng, X., Yang, S., Xu, K., Chen, X., Xu, F., Wang, L., Shen, Y., Wang, T., Zhang, M., Hu, W., Ye, C., Yu, X. F., Shao, J., & Zheng, S. (2018). Colorectal Cancer-derived small extracellular vesicles establish an inflammatory pre-metastatic niche in liver metastasis. Carcinogenesis, 39, 1368–1379.  https://doi.org/10.1093/carcin/bgy115.CrossRefPubMedGoogle Scholar
  85. 85.
    Xu, Z.-H., Miao, Z.-W., Jiang, Q.-Z., Gan, D.-X., Wei, X.-G., Xue, X.-Z., et al. (2018). Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 5, fj201800428R.  https://doi.org/10.1096/fj.201800428R.CrossRefGoogle Scholar
  86. 86.
    Liu, B., & Pilarsky, C. (2018). Analysis of DNA Hypermethylation in pancreatic Cancer using methylation-specific PCR and bisulfite sequencing. Methods in Molecular Biology (Clifton, N.J.), 1856, 269–282.  https://doi.org/10.1007/978-1-4939-8751-1_16.CrossRefGoogle Scholar
  87. 87.
    Peng, Z.-Y., Gu, R.-H., & Yan, B. (2018). Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. Journal of Cellular Biochemistry, 120, 1457–1463.  https://doi.org/10.1002/jcb.27291.CrossRefGoogle Scholar
  88. 88.
    Jiao, Y.-J., Jin, D.-D., Jiang, F., Liu, J.-X., Qu, L.-S., Ni, W.-K., et al. (2018). Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. Journal of Cellular Biochemistry, 120, 988–999.  https://doi.org/10.1002/jcb.27465.CrossRefPubMedGoogle Scholar
  89. 89.
    Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., … Fais, S. (2009). High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One, 4(4), e5219. doi: https://doi.org/10.1371/journal.pone.0005219.
  90. 90.
    Ni, Q., Stevic, I., Pan, C., Müller, V., Oliviera-Ferrer, L., Pantel, K., & Schwarzenbach, H. (2018). Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Scientific Reports, 8(1), 12974.  https://doi.org/10.1038/s41598-018-31108-y.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Boussadia, Z., Lamberti, J., Mattei, F., Pizzi, E., Puglisi, R., Zanetti, C., Pasquini, L., Fratini, F., Fantozzi, L., Felicetti, F., Fecchi, K., Raggi, C., Sanchez, M., D’Atri, S., Carè, A., Sargiacomo, M., & Parolini, I. (2018). Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules. Journal of Experimental & Clinical Cancer Research, 37(1), 245.  https://doi.org/10.1186/s13046-018-0915-z.CrossRefGoogle Scholar
  92. 92.
    Ban, J.-J., Lee, M., Im, W., & Kim, M. (2015). Low pH increases the yield of exosome isolation. Biochemical and Biophysical Research Communications, 461(1), 76–79.  https://doi.org/10.1016/j.bbrc.2015.03.172.CrossRefPubMedGoogle Scholar
  93. 93.
    King, H. W., Michael, M. Z., & Gleadle, J. M. (2012). Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 12, 421.  https://doi.org/10.1186/1471-2407-12-421.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: Key players in cancer progression. Molecular Cancer, 16(1), 31.  https://doi.org/10.1186/s12943-017-0597-8.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G., & Fais, S. (2002). Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. The Journal of Experimental Medicine, 195(10), 1303–1316.CrossRefGoogle Scholar
  96. 96.
    Huber, V., Fais, S., Iero, M., Lugini, L., Canese, P., Squarcina, P., Zaccheddu, A., Colone, M., Arancia, G., Gentile, M., Seregni, E., Valenti, R., Ballabio, G., Belli, F., Leo, E., Parmiani, G., & Rivoltini, L. (2005). Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology, 128(7), 1796–1804.CrossRefGoogle Scholar
  97. 97.
    Iero, M., Valenti, R., Huber, V., Filipazzi, P., Parmiani, G., Fais, S., & Rivoltini, L. (2008). Tumour-released exosomes and their implications in cancer immunity. Cell Death and Differentiation, 15(1), 80–88.  https://doi.org/10.1038/sj.cdd.4402237.CrossRefPubMedGoogle Scholar
  98. 98.
    Namee, N. M., & O’Driscoll, L. (2018). Extracellular vesicles and anti-cancer drug resistance. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1870(2), 123–136.  https://doi.org/10.1016/j.bbcan.2018.07.003.CrossRefGoogle Scholar
  99. 99.
    Gurusamy, D., Clever, D., Eil, R., & Restifo, N. P. (2017). Novel “elements” of immune suppression within the tumor microenvironment. Cancer Immunology Research, 5(6), 426–433.  https://doi.org/10.1158/2326-6066.CIR-17-0117.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Fais, S., O’Driscoll, L., Borras, F. E., Buzas, E., Camussi, G., Cappello, F., Carvalho, J., Cordeiro da Silva, A., del Portillo, H., el Andaloussi, S., Ficko Trček, T., Furlan, R., Hendrix, A., Gursel, I., Kralj-Iglic, V., Kaeffer, B., Kosanovic, M., Lekka, M. E., Lipps, G., Logozzi, M., Marcilla, A., Sammar, M., Llorente, A., Nazarenko, I., Oliveira, C., Pocsfalvi, G., Rajendran, L., Raposo, G., Rohde, E., Siljander, P., van Niel, G., Vasconcelos, M. H., Yáñez-Mó, M., Yliperttula, M. L., Zarovni, N., Zavec, A. B., & Giebel, B. (2016). Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano, 10(4), 3886–3899.  https://doi.org/10.1021/acsnano.5b08015.CrossRefPubMedGoogle Scholar
  101. 101.
    Letelier, P., Riquelme, I., Hernández, A., Guzmán, N., Farías, J., & Roa, J. (2016). Circulating MicroRNAs as biomarkers in biliary tract cancers. International Journal of Molecular Sciences, 17(5), 791.  https://doi.org/10.3390/ijms17050791.CrossRefPubMedCentralGoogle Scholar
  102. 102.
    Yokoyama, S., Takeuchi, A., Yamaguchi, S., Mitani, Y., Watanabe, T., Matsuda, K., Hotta, T., Shively, J. E., & Yamaue, H. (2017). Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction-measurement by ELISA. PLoS One, 12(8), e0183337.  https://doi.org/10.1371/journal.pone.0183337.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kharaziha, P., Ceder, S., Li, Q., & Panaretakis, T. (2012). Tumor cell-derived exosomes: A message in a bottle. Biochimica et Biophysica Acta, 1826(1), 103–111.  https://doi.org/10.1016/j.bbcan.2012.03.006.CrossRefPubMedGoogle Scholar
  104. 104.
    Logozzi, M., Capasso, C., Di Raimo, R., Del Prete, S., Mizzoni, D., Falchi, M., & Fais, S. (2018). Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. Journal of Enzyme Inhibition and Medicinal Chemistry, in press, 34, 272–278.  https://doi.org/10.1080/14756366.2018.1538980.CrossRefGoogle Scholar
  105. 105.
    Cappello, F., Logozzi, M., Campanella, C., Bavisotto, C. C., Marcilla, A., Properzi, F., & Fais, S. (2017). Exosome levels in human body fluids: A tumor marker by themselves? European Journal of Pharmaceutical Sciences, 96, 93–98.  https://doi.org/10.1016/j.ejps.2016.09.010.CrossRefPubMedGoogle Scholar
  106. 106.
    Properzi, F., Logozzi, M., & Fais, S. (2013). Exosomes: The future of biomarkers in medicine. Biomarkers in Medicine, 7(5), 769–778.  https://doi.org/10.2217/bmm.13.63.CrossRefPubMedGoogle Scholar
  107. 107.
    Properzi, F., Logozzi, M., Abdel-Haq, H., Federici, C., Lugini, L., Azzarito, T., et al. (2015). Detection of exosomal prions in blood by immunochemistry techniques. The Journal of General Virology, 96(Pt 7), 1969–1974.  https://doi.org/10.1099/vir.0.000117.CrossRefPubMedGoogle Scholar
  108. 108.
    Azzarito, T., Lugini, L., Spugnini, E. P., Canese, R., Gugliotta, A., Fidanza, S., & Fais, S. (2016). Effect of modified alkaline supplementation on Syngenic melanoma growth in CB57/BL mice. PLoS One, 11(7), e0159763.  https://doi.org/10.1371/journal.pone.0159763.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Spugnini, E. P., Buglioni, S., Carocci, F., Francesco, M., Vincenzi, B., Fanciulli, M., & Fais, S. (2014). High dose lansoprazole combined with metronomic chemotherapy: A phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine, 12, 225.  https://doi.org/10.1186/s12967-014-0225-y.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Iessi, E., Logozzi, M., Lugini, L., Azzarito, T., Federici, C., Spugnini, E. P., Mizzoni, D., di Raimo, R., Angelini, D. F., Battistini, L., Cecchetti, S., & Fais, S. (2017). Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 648–657.  https://doi.org/10.1080/14756366.2017.1292263.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mariantonia Logozzi
    • 1
  • Enrico Spugnini
    • 2
  • Davide Mizzoni
    • 1
  • Rossella Di Raimo
    • 1
  • Stefano Fais
    • 1
    Email author
  1. 1.Department of Oncology and Molecular MedicineIstituto Superiore di SanitàRomeItaly
  2. 2.SAFU DepartmentRegina Elena Cancer InstituteRomeItaly

Personalised recommendations