Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 4, pp 805–820 | Cite as

MACC1—the first decade of a key metastasis molecule from gene discovery to clinical translation

  • Harikrishnan Radhakrishnan
  • Wolfgang Walther
  • Fabian Zincke
  • Dennis Kobelt
  • Francesca Imbastari
  • Müge Erdem
  • Benedikt Kortüm
  • Mathias Dahlmann
  • Ulrike SteinEmail author
NON-THEMATIC REVIEW
  • 284 Downloads

Abstract

Deciphering the paths to metastasis and identifying key molecules driving this process is one important issue for understanding and treatment of cancer. Such a key driver molecule is Metastasis Associated in Colon Cancer 1 (MACC1). A decade long research on this evolutionarily conserved molecule with features of a transcription factor as well as an adapter protein for versatile protein-protein interactions has shown that it has manifold properties driving tumors to their metastatic stage. MACC1 transcriptionally regulates genes involved in epithelial-mesenchymal transition (EMT), including those which are able to directly induce metastasis like c-MET, impacts tumor cell migration and invasion, and induces metastasis in solid cancers. MACC1 has proven as a valuable biomarker for prognosis of metastasis formation linked to patient survival and gives promise to also act as a predictive marker for individualized therapies in a broad variety of cancers. This review discusses the many features of MACC1 in the context of the hallmarks of cancer and the potential of this molecule as biomarker and novel therapeutic target for restriction and prevention of metastasis.

Key words

MACC1 metastasis solid cancers biomarker prognosis and prediction targeted therapy 

Notes

Funding Information

Work in Prof. Ulrike Stein’s lab is supported by the German Cancer Consortium (DKTK).

References

  1. 1.
    Stein, U., & Schlag, P. M. (2007). Clinical, biological, and molecular aspects of metastasis in colorectal cancer. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 176, 61–80.Google Scholar
  2. 2.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians.  https://doi.org/10.3322/caac.21492.
  3. 3.
    Goldberg, R. M., Rothenberg, M. L., Van Cutsem, E., Benson, A. B., 3rd, Blanke, C. D., Diasio, R. B., et al. (2007). The continuum of care: a paradigm for the management of metastatic colorectal cancer. Oncologist, 12(1), 38–50.  https://doi.org/10.1634/theoncologist.12-1-38.Google Scholar
  4. 4.
    Stein, U., Walther, W., Arlt, F., Schwabe, H., Smith, J., Fichtner, I., et al. (2008). MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature Medicine, 15, 59.  https://doi.org/10.1038/nm.1889.Google Scholar
  5. 5.
    Stein, U., Dahlmann, M., & Walther, W. (2010). MACC1 - more than metastasis? Facts and predictions about a novel gene. J Mol Med (Berl), 88(1), 11–18.  https://doi.org/10.1007/s00109-009-0537-1.Google Scholar
  6. 6.
    Stein, U. (2013). MACC1 - a novel target for solid cancers. Expert Opinion on Therapeutic Targets, 17(9), 1039–1052.  https://doi.org/10.1517/14728222.2013.815727.Google Scholar
  7. 7.
    Zlobec, I. (2013). Novel biomarkers for the prediction of metastasis in colorectal cancer. Expert Opinion on Medical Diagnostics, 7, 137–146.  https://doi.org/10.1517/17530059.2013.753054.Google Scholar
  8. 8.
    Weidle, U. H., Birzele, F., & Kruger, A. (2015). Molecular targets and pathways involved in liver metastasis of colorectal cancer. Clinical & Experimental Metastasis, 32(6), 623–635.  https://doi.org/10.1007/s10585-015-9732-3.Google Scholar
  9. 9.
    Kopczyńska, E. K. (2016). The potential therapeutic applications and prognostic significance of metastasis associated in colon cancer 1 (MACC1) in cancers. Współczesna Onkologia, 4, 273–280.  https://doi.org/10.5114/wo.2016.61846.Google Scholar
  10. 10.
    Wu, Z.-Z., Chen, L.-S., Zhou, R., Bin, J.-P., Liao, Y.-L., & Liao, W.-J. (2016). Metastasis-associated in colon cancer-1 in gastric cancer: beyond metastasis. World Journal of Gastroenterology, 22, 6629.  https://doi.org/10.3748/wjg.v22.i29.6629.Google Scholar
  11. 11.
    Mudduluru, G., Ilm, K., Dahlmann, M., & Stein, U. (2017). MACC1, a novel player in solid cancer carcinogenesis. In Mechanisms of molecular carcinogenesis – volume 1 (pp. 11–38). Cham: Springer International Publishing.Google Scholar
  12. 12.
    Wang, G., Fu, Z., & Li, D. (2015). MACC1 overexpression and survival in solid tumors: a meta-analysis. Tumour Biology, 36(2), 1055–1065.  https://doi.org/10.1007/s13277-014-2736-9.Google Scholar
  13. 13.
    Wu, Z., Zhou, R., Su, Y., Sun, L., Liao, Y., & Liao, W. (2015). Prognostic value of MACC1 in digestive system neoplasms: a systematic review and meta-analysis. BioMed Research International, 2015, 252043.  https://doi.org/10.1155/2015/252043.Google Scholar
  14. 14.
    Sun, D.-W., Zhang, Y.-Y., Qi, Y., Liu, G.-Q., Chen, Y.-G., Ma, J., et al. (2015). Prognostic and clinicopathological significance of MACC1 expression in hepatocellular carcinoma patients: a meta-analysis. International Journal of Clinical and Experimental Medicine, 8, 4769–4777.Google Scholar
  15. 15.
    Zhao, Y., Dai, C., Wang, M., Kang, H., Lin, S., Yang, P., et al. (2016). Clinicopathological and prognostic significance of metastasis-associated in colon cancer-1 (MACC1) overexpression in colorectal cancer: a meta-analysis. Oncotarget, 7(39), 62966–62975.  https://doi.org/10.18632/oncotarget.11287.Google Scholar
  16. 16.
    Stein, U., Burock, S., Herrmann, P., Wendler, I., Niederstrasser, M., Wernecke, K.-D., et al. (2012). Circulating MACC1 Transcripts in Colorectal Cancer Patient Plasma Predict Metastasis and Prognosis. PLoS ONE, 7(11), e49249.  https://doi.org/10.1371/journal.pone.0049249.Google Scholar
  17. 17.
    Wang, G., Kang, M. X., Lu, W. J., Chen, Y., Zhang, B., & Wu, Y. L. (2012). MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncology Letters, 4(4), 783–791.  https://doi.org/10.3892/ol.2012.784.Google Scholar
  18. 18.
    Burock, S., Herrmann, P., Wendler, I., Niederstrasser, M., Wernecke, K.-D., & Stein, U. (2015). Circulating metastasis associated in colon cancer 1 transcripts in gastric cancer patient plasma as diagnostic and prognostic biomarker. World Journal of Gastroenterology, 21, 333.  https://doi.org/10.3748/wjg.v21.i1.333.Google Scholar
  19. 19.
    Wang, Z., Cai, M., Weng, Y., Zhang, F., Meng, D., Song, J., et al. (2015). Circulating MACC1 as a novel diagnostic and prognostic biomarker for nonsmall cell lung cancer. Journal of Cancer Research and Clinical Oncology, 141(8), 1353–1361.  https://doi.org/10.1007/s00432-014-1903-0.Google Scholar
  20. 20.
    Tan, W., Xie, X., Li, L., Tang, H., Ye, X., Chen, L., et al. (2016). Diagnostic and prognostic value of serum MACC1 in breast cancer patients. Oncotarget, 7(51), 84408–84415.  https://doi.org/10.18632/oncotarget.12910.Google Scholar
  21. 21.
    Ashktorab, H., Hermann, P., Nouraie, M., Shokrani, B., Lee, E., Haidary, T., et al. (2016). Increased MACC1 levels in tissues and blood identify colon adenoma patients at high risk. Journal of Translational Medicine, 14(1), 215.  https://doi.org/10.1186/s12967-016-0971-0.Google Scholar
  22. 22.
    Shimokawa, H., Uramoto, H., Onitsuka, T., Chundong, G., Hanagiri, T., Oyama, T., et al. (2011). Overexpression of MACC1 mRNA in lung adenocarcinoma is associated with postoperative recurrence. The Journal of Thoracic and Cardiovascular Surgery, 141, 895–898.  https://doi.org/10.1016/j.jtcvs.2010.09.044.Google Scholar
  23. 23.
    Isella, C., Mellano, A., Galimi, F., Petti, C., Capussotti, L., De Simone, M., et al. (2013). MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Annals of Surgery, 257, 1089–1095.  https://doi.org/10.1097/SLA.0b013e31828f96bc.Google Scholar
  24. 24.
    Gao, S., Lin, B.-Y., Yang, Z., Zheng, Z.-Y., Liu, Z.-K., Wu, L.-M., et al. (2014). Role of overexpression of MACC1 and/or FAK in predicting prognosis of hepatocellular carcinoma after liver transplantation. International Journal of Medical Sciences, 11, 268–275.  https://doi.org/10.7150/ijms.7769.Google Scholar
  25. 25.
    Li, H. F., Liu, Y. Q., Shen, Z. J., Gan, X. F., Han, J. J., Liu, Y. Y., et al. (2015). Downregulation of MACC1 inhibits invasion, migration and proliferation, attenuates cisplatin resistance and induces apoptosis in tongue squamous cell carcinoma. Oncology Reports, 33(2), 651–660.  https://doi.org/10.3892/or.2014.3612.Google Scholar
  26. 26.
    Shang, C., Hong, Y., Guo, Y., Liu, Y. H., & Xue, Y. X. (2015). Influence of the MACC1 gene on sensitivity to chemotherapy in human U251 glioblastoma cells. Asian Pacific Journal of Cancer Prevention, 16(1), 195–199.  https://doi.org/10.7314/APJCP.2015.16.1.195.Google Scholar
  27. 27.
    Chen, Z. M., Shi, H. R., Li, X., Deng, Y. X., & Zhang, R. T. (2015). Downregulation of MACC1 expression enhances cisplatin sensitivity in SKOV-3/DDP cells. Genetics and Molecular Research, 14, 17134–17144.  https://doi.org/10.4238/2015.December.16.13.Google Scholar
  28. 28.
    Zhang, R., Shi, H., Ren, F., Li, X., Zhang, M., Feng, W., et al. (2016). Knockdown of MACC1 expression increases cisplatin sensitivity in cisplatin-resistant epithelial ovarian cancer cells. Oncology Reports, 35(4), 2466–2472.  https://doi.org/10.3892/or.2016.4585.Google Scholar
  29. 29.
    Wang, C., Wen, Z., Xie, J., Zhao, Y., Zhao, L., Zhang, S., et al. (2017). MACC1 mediates chemotherapy sensitivity of 5-FU and cisplatin via regulating MCT1 expression in gastric cancer. Biochemical and Biophysical Research Communications, 485(3), 665–671.  https://doi.org/10.1016/j.bbrc.2017.02.096.Google Scholar
  30. 30.
    Zhang, Q., Zhang, B., Sun, L., Yan, Q., Zhang, Y., Zhang, Z., et al. (2018). Cisplatin resistance in lung cancer is mediated by MACC1 expression through PI3K/AKT signaling pathway activation. Acta Biochimica et Biophysica Sinica Shanghai, 50(8), 748–756.  https://doi.org/10.1093/abbs/gmy074.Google Scholar
  31. 31.
    Duan, J., Chen, L., Zhou, M., Zhang, J., Sun, L., Huang, N., et al. (2017). MACC1 decreases the chemosensitivity of gastric cancer cells to oxaliplatin by regulating FASN expression. Oncology Reports, 37, 2583–2592.  https://doi.org/10.3892/or.2017.5519.Google Scholar
  32. 32.
    Wang, J., Wang, W., Cai, H., Du, B., Zhang, L., Ma, W., et al. (2017). MACC1 facilitates chemoresistance and cancer stem celllike properties of colon cancer cells through the PI3K/AKT signaling pathway. Molecular Medicine Reports, 16(6), 8747–8754.  https://doi.org/10.3892/mmr.2017.7721.Google Scholar
  33. 33.
    Rohr, U. P., Herrmann, P., Ilm, K., Zhang, H., Lohmann, S., Reiser, A., et al. (2017). Prognostic value of MACC1 and proficient mismatch repair status for recurrence risk prediction in stage II colon cancer patients: the BIOGRID studies. Annals of Oncology, 28(8), 1869–1875.  https://doi.org/10.1093/annonc/mdx207.Google Scholar
  34. 34.
    Zhou, W., Liu, L., Xue, Y., Zheng, J., Liu, X., Ma, J., et al. (2017). Combination of endothelial-monocyte-activating polypeptide-II with temozolomide suppress malignant biological behaviors of human glioblastoma stem cells via miR-590-3p/MACC1 inhibiting PI3K/AKT/mTOR signal pathway. Frontiers in Molecular Neuroscience, 10, 68.  https://doi.org/10.3389/fnmol.2017.00068.Google Scholar
  35. 35.
    Kawamura, M., Saigusa, S., Toiyama, Y., Tanaka, K., Okugawa, Y., Hiro, J., et al. (2012). Correlation of MACC1 and MET expression in rectal cancer after neoadjuvant chemoradiotherapy. Anticancer Research, 32(4), 1527–1531.Google Scholar
  36. 36.
    Yang, Y. P., Qu, J. H., Chang, X. J., Lu, Y. Y., Bai, W. L., Dong, Z., et al. (2013). High intratumoral metastasis-associated in colon cancer-1 expression predicts poor outcomes of cryoablation therapy for advanced hepatocellular carcinoma. Journal of Translational Medicine, 11, 41.  https://doi.org/10.1186/1479-5876-11-41.Google Scholar
  37. 37.
    Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., et al. (2018). Ensembl 2018. Nucleic Acids Research, 46(D1), D754–D761.  https://doi.org/10.1093/nar/gkx1098.Google Scholar
  38. 38.
    Zhao, Y., Liu, Y., Lin, L., Huang, Q., He, W., Zhang, S., et al. (2018). The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Molecular Cancer, 17(1), 69.  https://doi.org/10.1186/s12943-018-0820-2.Google Scholar
  39. 39.
    Thierry-Mieg, D., & Thierry-Mieg, J. (2006). AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biology, 7(Suppl 1, S12), 11–14.  https://doi.org/10.1186/gb-2006-7-s1-s12.Google Scholar
  40. 40.
    Kokoszyńska, K., Kryński, J., Rychlewski, L., & Wyrwicz, L. S. (2009). Unexpected domain composition of MACC1 links MET signaling and apoptosis. Acta Biochimica Polonica, 56, 317–323.Google Scholar
  41. 41.
    Juneja, M., Ilm, K., Schlag, P. M., & Stein, U. (2013). Promoter identification and transcriptional regulation of the metastasis gene MACC1 in colorectal cancer. Molecular Oncology, 7, 929–943.  https://doi.org/10.1016/j.molonc.2013.05.003.Google Scholar
  42. 42.
    Guo, T., Zhao, S., Wang, P., Xue, X., Zhang, Y., Yang, M., et al. (2017). YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma. Oncotarget, 8, 48110–48125.  https://doi.org/10.18632/oncotarget.18262.Google Scholar
  43. 43.
    Xia, J., Wang, H., Huang, H., Sun, L., Dong, S., Huang, N., et al. (2016). Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer. Cancer Letters, 381, 31–40.  https://doi.org/10.1016/j.canlet.2016.07.014.Google Scholar
  44. 44.
    Montorsi, L., Guizzetti, F., Alecci, C., Caporali, A., Martello, A., Atene, C. G., et al. (2016). Loss of ZFP36 expression in colorectal cancer correlates to wnt/ ss-catenin activity and enhances epithelial-to-mesenchymal transition through upregulation of ZEB1, SOX9 and MACC1. Oncotarget, 7(37), 59144–59157.  https://doi.org/10.18632/oncotarget.10828.Google Scholar
  45. 45.
    Li, S., Zhu, J., Li, J., Li, S., & Li, B. (2018). MicroRNA-141 inhibits proliferation of gastric cardia adenocarcinoma by targeting MACC1. Archives of Medical Science, 14, 588–596.  https://doi.org/10.5114/aoms.2017.68757.Google Scholar
  46. 46.
    Zhang, Y., Wang, Z., Chen, M., Peng, L., Wang, X., Ma, Q., et al. (2012). MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Molecular Cancer, 11, 23.  https://doi.org/10.1186/1476-4598-11-23.Google Scholar
  47. 47.
    Tokarz, P., & Blasiak, J. (2012). The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochimica Polonica, 59, 467–474.Google Scholar
  48. 48.
    Wang, G., Gu, J., & Gao, Y. (2016). MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer. Tumour Biology, 37(10), 13983–13993.  https://doi.org/10.1007/s13277-016-5252-2.Google Scholar
  49. 49.
    Feng, J., Wang, J., Chen, M., Chen, G., Wu, Z., Ying, L., et al. (2015). miR-200a suppresses cell growth and migration by targeting MACC1 and predicts prognosis in hepatocellular carcinoma. Oncology Reports, 33(2), 713–720.  https://doi.org/10.3892/or.2014.3642.Google Scholar
  50. 50.
    Ilm, K., Fuchs, S., Mudduluru, G., & Stein, U. (2016). MACC1 is post-transcriptionally regulated by miR-218 in colorectal cancer. Oncotarget, 7(33), 53443–53458.  https://doi.org/10.18632/oncotarget.10803.Google Scholar
  51. 51.
    Huang, N., Wu, Z., Lin, L., Zhou, M., Wang, L., Ma, H., et al. (2015). MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget, 6(17), 15222–15234.  https://doi.org/10.18632/oncotarget.3835.Google Scholar
  52. 52.
    Zhang, T., Liu, W., Zeng, X.-c., Jiang, N., Fu, B.-s., Guo, Y., et al. (2016). Down-regulation of microRNA-338-3p promoted angiogenesis in hepatocellular carcinoma. Biomedicine & Pharmacotherapy, 84, 583–591.  https://doi.org/10.1016/J.BIOPHA.2016.09.056.Google Scholar
  53. 53.
    Shang, C., Hong, Y., Guo, Y., & Xue, Y. X. (2016). Mir-338-3p inhibits malignant biological behaviors of glioma cells by targeting MACC1 gene. Medical Science Monitor, 22, 710–716.  https://doi.org/10.12659/MSM.897055.Google Scholar
  54. 54.
    Hua, F.-F., Liu, S.-S., Zhu, L.-H., Wang, Y.-H., Liang, X., Ma, N., et al. (2017). MiRNA-338-3p regulates cervical cancer cells proliferation by targeting MACC1 through MAPK signaling pathway. European Review for Medical and Pharmacological Sciences, 21, 5342–5352.Google Scholar
  55. 55.
    Li, J., Mao, X., Wang, X., Miao, G., & Li, J. (2017). miR-433 reduces cell viability and promotes cell apoptosis by regulating MACC1 in colorectal cancer. Oncology Letters, 13(1), 81–88.  https://doi.org/10.3892/ol.2016.5445.Google Scholar
  56. 56.
    Wang, S., Zhang, Y., Yuan, S., & Ji, X. (2018). MicroRNA485 targets MACC1 and inhibits cervical cancer cell proliferation and invasion. Molecular Medicine Reports, 18(2), 2407–2416.  https://doi.org/10.3892/mmr.2018.9186.Google Scholar
  57. 57.
    Ma, L., Zhou, Y., Luo, X., Gao, H., Deng, X., & Jiang, Y. (2017). Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget, 8(3), 4125–4135.  https://doi.org/10.18632/oncotarget.13670.Google Scholar
  58. 58.
    Cui, Z., Tang, J., Chen, J., & Wang, Z. (2014). Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell International, 14, 47.  https://doi.org/10.1186/1475-2867-14-47.Google Scholar
  59. 59.
    Wang, N., Zhang, Y., & Liang, H. (2018). microRNA-598 inhibits cell proliferation and invasion of glioblastoma by directly targeting metastasis associated in colon cancer-1. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics.  https://doi.org/10.3727/096504018X15185735627746.
  60. 60.
    Pan, T., Chen, W., Yuan, X., Shen, J., Qin, C., & Wang, L. (2017). miR-944 inhibits metastasis of gastric cancer by preventing the epithelial-mesenchymal transition via MACC1/Met/AKT signaling. FEBS Open Bio, 7(7), 905–914.  https://doi.org/10.1002/2211-5463.12215.Google Scholar
  61. 61.
    Wen, L., Li, Y., Jiang, Z., Zhang, Y., Yang, B., & Han, F. (2017). miR-944 inhibits cell migration and invasion by targeting MACC1 in colorectal cancer. Oncology Reports, 37(6), 3415–3422.  https://doi.org/10.3892/or.2017.5611.Google Scholar
  62. 62.
    Tokarz, P., Pawlowska, E., Bialkowska-Warzecha, J., & Blasiak, J. (2017). The significance of DNA methylation profile in metastasis-related genes for the progression of colorectal cancer. Cellular and Molecular Biology (Noisy-le-Grand, France), 63, 79–87.Google Scholar
  63. 63.
    Li, Z., Yanfang, W., Li, J., Jiang, P., Peng, T., Chen, K., et al. (2018). Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Letters, 432, 237–250.  https://doi.org/10.1016/j.canlet.2018.04.035.Google Scholar
  64. 64.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.  https://doi.org/10.1016/S0092-8674(00)81683-9.Google Scholar
  65. 65.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.Google Scholar
  66. 66.
    Nitsche, U., Rosenberg, R., Balmert, A., Schuster, T., Slotta-Huspenina, J., Herrmann, P., et al. (2012). Integrative marker analysis allows risk assessment for metastasis in stage II colon cancer. Annals of Surgery, 256(5), 763–771; discussion 771.  https://doi.org/10.1097/SLA.0b013e318272de87.Google Scholar
  67. 67.
    Shirahata, A., Sakata, M., Kitamura, Y., Sakuraba, K., Yokomizo, K., Goto, T., et al. (2010). MACC 1 as a marker for peritoneal-disseminated gastric carcinoma. Anticancer Research, 30(9), 3441–3444.Google Scholar
  68. 68.
    Wang, Z., Li, Z., Wu, C., Wang, Y., Xia, Y., Chen, L., et al. (2014). MACC1 overexpression predicts a poor prognosis for non-small cell lung cancer. Medical Oncology, 31(1), 790.  https://doi.org/10.1007/s12032-013-0790-6.Google Scholar
  69. 69.
    Qiu, J., Huang, P., Liu, Q., Hong, J., Li, B., Lu, C., et al. (2011). Identification of MACC1 as a novel prognostic marker in hepatocellular carcinoma. Journal of Translational Medicine, 9, 166.  https://doi.org/10.1186/1479-5876-9-166.Google Scholar
  70. 70.
    Xie, C., Wu, J., Yun, J., Lai, J., Yuan, Y., Gao, Z., et al. (2013). MACC1 as a prognostic biomarker for early-stage and AFP-normal hepatocellular carcinoma. PLoS ONE, 8(5), e64235.  https://doi.org/10.1371/journal.pone.0064235.Google Scholar
  71. 71.
    Huang, Y., Zhang, H., Cai, J., Fang, L., Wu, J., Ye, C., et al. (2013). Overexpression of MACC1 and Its significance in human Breast Cancer Progression. Cell & Bioscience, 3(1), 16.  https://doi.org/10.1186/2045-3701-3-16.Google Scholar
  72. 72.
    Muendlein, A., Hubalek, M., Geller-Rhomberg, S., Gasser, K., Winder, T., Drexel, H., et al. (2014). Significant survival impact of MACC1 polymorphisms in HER2 positive breast cancer patients. European Journal of Cancer, 50(12), 2134–2141.  https://doi.org/10.1016/j.ejca.2014.05.007.Google Scholar
  73. 73.
    Hu, H., Tian, D., Chen, T., Han, R., Sun, Y., & Wu, C. (2014). Metastasis-associated in colon cancer 1 is a novel survival-related biomarker for human patients with renal pelvis carcinoma. PLoS ONE, 9(6), e100161.  https://doi.org/10.1371/journal.pone.0100161.Google Scholar
  74. 74.
    Lederer, A., Herrmann, P., Seehofer, D., Dietel, M., Pratschke, J., Schlag, P., et al. (2015). Metastasis-associated in colon cancer 1 is an independent prognostic biomarker for survival in Klatskin tumor patients. Hepatology, 62(3), 841–850.  https://doi.org/10.1002/hep.27885.Google Scholar
  75. 75.
    Li, H., Zhang, H., Zhao, S., Shi, Y., Yao, J., Zhang, Y., et al. (2015). Overexpression of MACC1 and the association with hepatocyte growth factor/c-Met in epithelial ovarian cancer. Oncology Letters, 9(5), 1989–1996.  https://doi.org/10.3892/ol.2015.2984.Google Scholar
  76. 76.
    Zhou, X., Xu, C.-J., Wang, J.-X., Dai, T., Ye, Y.-P., Cui, Y.-M., et al. (2015). Metastasis-associated in colon cancer-1 associates With poor prognosis and promotes cell invasion and angiogenesis in human cervical cancer. International Journal of Gynecological Cancer, 25, 1353–1363.  https://doi.org/10.1097/IGC.0000000000000524.Google Scholar
  77. 77.
    Hagemann, C., Fuchs, S., Monoranu, C. M., Herrmann, P., Smith, J., Hohmann, T., et al. (2013). Impact of MACC1 on human malignant glioma progression and patients unfavorable prognosis. Neuro-Oncology, 15(12), 1696–1709.  https://doi.org/10.1093/neuonc/not136.Google Scholar
  78. 78.
    Yang, T., Kong, B., Kuang, Y. Q., Cheng, L., Gu, J. W., Zhang, J. H., et al. (2014). Overexpression of MACC1 protein and its clinical implications in patients with glioma. Tumour Biology, 35(1), 815–819.  https://doi.org/10.1007/s13277-013-1112-5.Google Scholar
  79. 79.
    Zhang, K., Tian, F., Zhang, Y., Zhu, Q., Xue, N., Zhu, H., et al. (2014). MACC1 is involved in the regulation of proliferation, colony formation, invasion ability, cell cycle distribution, apoptosis and tumorigenicity by altering Akt signaling pathway in human osteosarcoma. Tumour Biology, 35(3), 2537–2548.  https://doi.org/10.1007/s13277-013-1335-5.Google Scholar
  80. 80.
    Koelzer, V. H., Herrmann, P., Zlobec, I., Karamitopoulou, E., Lugli, A., & Stein, U. (2015). Heterogeneity analysis of metastasis associated in colon cancer 1 (MACC1) for survival prognosis of colorectal cancer patients: a retrospective cohort study. BMC Cancer, 15, 160.  https://doi.org/10.1186/s12885-015-1150-z.Google Scholar
  81. 81.
    Barbazan, J., Dunkel, Y., Li, H., Nitsche, U., Janssen, K. P., Messer, K., et al. (2016). Prognostic impact of modulators of G proteins in circulating tumor cells from patients with metastatic colorectal cancer. Scientific Reports, 6, 22112.  https://doi.org/10.1038/srep22112.Google Scholar
  82. 82.
    Lemos, C., Hardt, M. S., Juneja, M., Voss, C., Forster, S., Jerchow, B., et al. (2016). MACC1 induces tumor progression in transgenic mice and colorectal cancer patients via increased pluripotency markers Nanog and Oct4. Clinical Cancer Research, 22(11), 2812–2824.  https://doi.org/10.1158/1078-0432.CCR-15-1425.Google Scholar
  83. 83.
    Jiang, W. G., Sanders, A. J., Katoh, M., Ungefroren, H., Gieseler, F., Prince, M., et al. (2015). Tissue invasion and metastasis: molecular, biological and clinical perspectives. Seminars in Cancer Biology, 35, S244–S275.  https://doi.org/10.1016/j.semcancer.2015.03.008.Google Scholar
  84. 84.
    Pichorner, A., Sack, U., Kobelt, D., Kelch, I., Arlt, F., Smith, J., et al. (2012). In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clinical & Experimental Metastasis, 29(6), 573–583.  https://doi.org/10.1007/s10585-012-9472-6.Google Scholar
  85. 85.
    Stein, U., Smith, J., Walther, W., & Arlt, F. (2009). MACC1 controls Met: what a difference an Sp1 site makes. Cell Cycle, 8(15), 2467–2469.  https://doi.org/10.4161/cc.8.15.9018.Google Scholar
  86. 86.
    Zhang, R., Shi, H., Chen, Z., Wu, Q., Ren, F., & Huang, H. (2011). Effects of metastasis-associated in colon cancer 1 inhibition by small hairpin RNA on ovarian carcinoma OVCAR-3 cells. Journal of Experimental & Clinical Cancer Research, 30, 83.  https://doi.org/10.1186/1756-9966-30-83.Google Scholar
  87. 87.
    Sheng, X. J., Li, Z., Sun, M., Wang, Z. H., Zhou, D. M., Li, J. Q., et al. (2014). MACC1 induces metastasis in ovarian carcinoma by upregulating hepatocyte growth factor receptor c-MET. Oncology Letters, 8(2), 891–897.  https://doi.org/10.3892/ol.2014.2184.Google Scholar
  88. 88.
    Sun, L., Duan, J., Jiang, Y., Wang, L., Huang, N., Lin, L., et al. (2015). Metastasis-associated in colon cancer-1 upregulates vascular endothelial growth factor-C/D to promote lymphangiogenesis in human gastric cancer. Cancer Letters, 357, 242–253.  https://doi.org/10.1016/j.canlet.2014.11.035.Google Scholar
  89. 89.
    Gao, J., Ding, F., Liu, Q., & Yao, Y. (2013). Knockdown of MACC1 expression suppressed hepatocellular carcinoma cell migration and invasion and inhibited expression of MMP2 and MMP9. Molecular and Cellular Biochemistry, 376(1-2), 21–32.  https://doi.org/10.1007/s11010-012-1545-y.Google Scholar
  90. 90.
    Wang, L., Lin, L., Chen, X., Sun, L., Liao, Y., Huang, N., et al. (2015). Metastasis-associated in colon cancer-1 promotes vasculogenic mimicry in gastric cancer by upregulating TWIST1/2. Oncotarget, 6(13), 11492–11506.  https://doi.org/10.18632/oncotarget.3416.Google Scholar
  91. 91.
    Wang, L., Zhou, R., Zhao, Y., Dong, S., Zhang, J., Luo, Y., et al. (2016). MACC-1 promotes endothelium-dependent angiogenesis in gastric cancer by activating TWIST1/VEGF-a signal pathway. PLoS ONE, 11(6), e0157137.  https://doi.org/10.1371/journal.pone.0157137.Google Scholar
  92. 92.
    Meng, F., Li, H., Shi, H., Yang, Q., Zhang, F., Yang, Y., et al. (2013). MACC1 down-regulation inhibits proliferation and tumourigenicity of nasopharyngeal carcinoma cells through Akt/beta-catenin signaling pathway. PLoS ONE, 8(4), e60821.  https://doi.org/10.1371/journal.pone.0060821.Google Scholar
  93. 93.
    Zhen, T., Dai, S., Li, H., Yang, Y., Kang, L., Shi, H., et al. (2014). MACC1 promotes carcinogenesis of colorectal cancer via beta-catenin signaling pathway. Oncotarget, 5(11), 3756–3769.  https://doi.org/10.18632/oncotarget.1993.Google Scholar
  94. 94.
    Chen, S., Zong, Z. H., Wu, D. D., Sun, K. X., Liu, B. L., & Zhao, Y. (2017). The role of metastasis-associated in colon cancer 1 (MACC1) in endometrial carcinoma tumorigenesis and progression. Molecular Carcinogenesis, 56(4), 1361–1371.  https://doi.org/10.1002/mc.22599.Google Scholar
  95. 95.
    Ding, Y., Li, X., Hong, D., Jiang, L., He, Y., & Fang, H. (2016). Silence of MACC1 decreases cell migration and invasion in human malignant melanoma through inhibiting the EMT. Bioscience Trends, 10(4), 258–264.  https://doi.org/10.5582/bst.2016.01091.Google Scholar
  96. 96.
    Qian, L. Q., Li, X. Q., Ye, P. H., Su, H. Y., Wang, G., Liu, Y., et al. (2017). Downregulation of MACC1 inhibits the viability, invasion and migration and induces apoptosis in esophageal carcinoma cells through the phosphatase and tensin homolog/phosphoinositide 3-kinase/protein kinase B signaling pathway. Oncology Letters, 14(4), 4897–4905.  https://doi.org/10.3892/ol.2017.6790.Google Scholar
  97. 97.
    Fukumoto, S., Hsieh, C. M., Maemura, K., Layne, M. D., Yet, S. F., Lee, K. H., et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. The Journal of Biological Chemistry, 276(20), 17479–17483.  https://doi.org/10.1074/jbc.C000880200.Google Scholar
  98. 98.
    Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., et al. (2007). Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. The Journal of Biological Chemistry, 282(15), 11221–11229.  https://doi.org/10.1074/jbc.M611871200.Google Scholar
  99. 99.
    Lee, G., Goretsky, T., Managlia, E., Dirisina, R., Singh, A. P., Brown, J. B., et al. (2010). phosphoinositide 3-kinase signaling mediates β-Catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology, 139, 869–881.e869.  https://doi.org/10.1053/j.gastro.2010.05.037.Google Scholar
  100. 100.
    Stein, U., Arlt, F., Walther, W., Smith, J., Waldman, T., Harris, E. D., et al. (2006). The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology, 131(5), 1486–1500.  https://doi.org/10.1053/j.gastro.2006.08.041.Google Scholar
  101. 101.
    Klaus, A., & Birchmeier, W. (2008). Wnt signalling and its impact on development and cancer. Nature Reviews Cancer, 8, 387–398.  https://doi.org/10.1038/nrc2389.Google Scholar
  102. 102.
    Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7, re8.  https://doi.org/10.1126/scisignal.2005189.Google Scholar
  103. 103.
    Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews. Molecular Cell Biology, 4(12), 915–925.  https://doi.org/10.1038/nrm1261.Google Scholar
  104. 104.
    Zhang, W., & Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 12(1), 9–18.  https://doi.org/10.1038/sj.cr.7290105.Google Scholar
  105. 105.
    Tan, N. Y., & Khachigian, L. M. (2009). Sp1 phosphorylation and its regulation of gene transcription. Molecular and Cell Biology, 29(10), 2483–2488.  https://doi.org/10.1128/MCB.01828-08.Google Scholar
  106. 106.
    Wang, H., Wang, H. S., Zhou, B. H., Li, C. L., Zhang, F., Wang, X. F., et al. (2013). Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer. PLoS ONE, 8(2), e56664.  https://doi.org/10.1371/journal.pone.0056664.Google Scholar
  107. 107.
    Dong, G., Wang, M., Gu, G., Li, S., Sun, X., Li, Z., et al. (2018). MACC1 and HGF are associated with survival in patients with gastric cancer. Oncology Letters, 15(3), 3207–3213.  https://doi.org/10.3892/ol.2017.7710.Google Scholar
  108. 108.
    Lichtenberger, B. M., Tan, P. K., Niederleithner, H., Ferrara, N., Petzelbauer, P., & Sibilia, M. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279.  https://doi.org/10.1016/j.cell.2009.12.046.Google Scholar
  109. 109.
    Malumbres, M., & Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, 9, 153–166.  https://doi.org/10.1038/nrc2602.Google Scholar
  110. 110.
    Meyer, N., & Penn, L. Z. (2008). Reflecting on 25 years with MYC. Nature Reviews Cancer, 8, 976–990.  https://doi.org/10.1038/nrc2231.Google Scholar
  111. 111.
    Song, M. S., Salmena, L., & Pandolfi, P. P. (2012). The functions and regulation of the PTEN tumour suppressor. Nature Reviews. Molecular Cell Biology, 13(5), 283–296.  https://doi.org/10.1038/nrm3330.Google Scholar
  112. 112.
    Sun, L., Li, G., Dai, B., Tan, W., Zhao, H., Li, X., et al. (2015). Silence of MACC1 expression by RNA interference inhibits proliferation, invasion and metastasis, and promotes apoptosis in U251 human malignant glioma cells. Molecular Medicine Reports, 12(3), 3423–3431.  https://doi.org/10.3892/mmr.2015.3886.Google Scholar
  113. 113.
    Wang, L., Wu, Y., Lin, L., Liu, P., Huang, H., Liao, W., et al. (2013). Metastasis-associated in colon cancer-1 upregulation predicts a poor prognosis of gastric cancer, and promotes tumor cell proliferation and invasion. International Journal of Cancer, 133(6), 1419–1430.  https://doi.org/10.1002/ijc.28140.Google Scholar
  114. 114.
    Schmid, F., Wang, Q., Huska, M. R., Andrade-Navarro, M. A., Lemm, M., Fichtner, I., et al. (2016). SPON2, a newly identified target gene of MACC1, drives colorectal cancer metastasis in mice and is prognostic for colorectal cancer patient survival. Oncogene, 35(46), 5942–5952.  https://doi.org/10.1038/onc.2015.451.Google Scholar
  115. 115.
    Yao, Y., Dou, C., Lu, Z., Zheng, X., & Liu, Q. (2015). MACC1 suppresses cell apoptosis in hepatocellular carcinoma by targeting the HGF/c-MET/AKT pathway. Cellular Physiology and Biochemistry, 35(3), 983–996.  https://doi.org/10.1159/000369754.Google Scholar
  116. 116.
    Chen, X. P., Ren, X. P., Lan, J. Y., Chen, Y. G., & Shen, Z. J. (2014). Analysis of HGF, MACC1, C-met and apoptosis-related genes in cervical carcinoma mice. Molecular Biology Reports, 41(3), 1247–1256.  https://doi.org/10.1007/s11033-013-2969-5.Google Scholar
  117. 117.
    Radhakrishnan, H., Ilm, K., Walther, W., Shirasawa, S., Sasazuki, T., Daniel, P. T., et al. (2017). MACC1 regulates Fas mediated apoptosis through STAT1/3 - Mcl-1 signaling in solid cancers. Cancer Letters, 403, 231–245.  https://doi.org/10.1016/j.canlet.2017.06.020.Google Scholar
  118. 118.
    Zhang, X. K., Zhang, L. X., Jia, C. Y., Sun, H. M., Zou, Q. G., Wang, Z., et al. (2017). MACC1 overexpression induces cisplatin resistance in lung adenocarcinoma A549 cells by activating c-Met/Akt pathway. International Journal of Clinical and Experimental Medicine, 10(8), 11778–11786.Google Scholar
  119. 119.
    Modiano, J. F., & Bellgrau, D. (2016). Fas ligand based immunotherapy: A potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth? Discovery Medicine, 21, 109–116.Google Scholar
  120. 120.
    Jazirehi, A. R., Lim, A., & Dinh, T. (2016). PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab. American Journal of Cancer Research, 6(10), 2117–2128.Google Scholar
  121. 121.
    Erreni, M., Mantovani, A., & Allavena, P. (2011). Tumor-associated macrophages (TAM) and inflammation in colorectal cancer. Cancer Microenvironment, 4(2), 141–154.  https://doi.org/10.1007/s12307-010-0052-5.Google Scholar
  122. 122.
    Jedinak, A., Dudhgaonkar, S., & Sliva, D. (2010). Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology, 215, 242–249.  https://doi.org/10.1016/j.imbio.2009.03.004.Google Scholar
  123. 123.
    de Aquino, M. T. P., Malhotra, A., Mishra, M. K., & Shanker, A. (2015). Challenges and future perspectives of T cell immunotherapy in cancer. Immunology Letters, 166, 117–133.  https://doi.org/10.1016/j.imlet.2015.05.018.Google Scholar
  124. 124.
    Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.  https://doi.org/10.1016/j.ccr.2005.02.013.Google Scholar
  125. 125.
    Dulai, P. S., Sandborn, W. J., & Gupta, S. (2016). Colorectal cancer and dysplasia in inflammatory bowel disease: a review of disease epidemiology, pathophysiology, and management. Cancer Prevention Research (Philadelphia, Pa.), 9(12), 887–894.  https://doi.org/10.1158/1940-6207.CAPR-16-0124.Google Scholar
  126. 126.
    Elding, H., Lau, W., Swallow, D. M., & Maniatis, N. (2013). Refinement in localization and identification of gene regions associated with Crohn disease. American Journal of Human Genetics, 92(1), 107–113.  https://doi.org/10.1016/j.ajhg.2012.11.004.Google Scholar
  127. 127.
    Harpaz, N., Taboada, S., Mabel Ko, H., Yu, J., Yang, Q., Xu, H., et al. (2014). Expression of MACC1 and MET in inflammatory bowel disease-associated colonic neoplasia. Inflammatory Bowel Diseases, 20, 703–711.  https://doi.org/10.1097/01.MIB.0000442679.39804.48.Google Scholar
  128. 128.
    Low-Marchelli, J. M., Ardi, V. C., Vizcarra, E. A., van Rooijen, N., Quigley, J. P., & Yang, J. (2013). Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Research, 73(2), 662–671.  https://doi.org/10.1158/0008-5472.CAN-12-0653.Google Scholar
  129. 129.
    Ilm, K., Kemmner, W., Osterland, M., Burock, S., Koch, G., Herrmann, P., et al. (2015). High MACC1 expression in combination with mutated KRAS G13 indicates poor survival of colorectal cancer patients. Molecular Cancer, 14, 38.  https://doi.org/10.1186/s12943-015-0316-2.Google Scholar
  130. 130.
    Lang, A. H., Geller-Rhomberg, S., Winder, T., Stark, N., Gasser, K., Hartmann, B., et al. (2012). A common variant of the MACC1 gene is significantly associated with overall survival in colorectal cancer patients. BMC Cancer, 12, 20.  https://doi.org/10.1186/1471-2407-12-20.Google Scholar
  131. 131.
    Schmid, F., Burock, S., Klockmeier, K., Schlag, P. M., & Stein, U. (2012). SNPs in the coding region of the metastasis-inducing gene MACC1 and clinical outcome in colorectal cancer. Molecular Cancer, 11, 49.  https://doi.org/10.1186/1476-4598-11-49.Google Scholar
  132. 132.
    Horvat, M., Potocnik, U., Repnik, K., Kavalar, R., Zadnik, V., Potrc, S., et al. (2017). Single nucleotide polymorphisms in genes MACC1, RAD18, MMP7 and SDF-1a as prognostic factors in resectable colorectal cancer. Radiology and Oncology, 51(2), 151–159.  https://doi.org/10.1515/raon-2016-0043.Google Scholar
  133. 133.
    Dai, Z.-J., Liu, X.-H., Kang, H.-F., Wang, X.-J., Jin, T.-B., Zhang, S.-Q., et al. (2016). Genetic variation in metastasis-associated in colon cancer-1 and the risk of breast cancer among the Chinese Han population: a STROBE-compliant observational study. Medicine, 95, e2801.  https://doi.org/10.1097/MD.0000000000002801.Google Scholar
  134. 134.
    Zheng, Z., Gao, S., Yang, Z., Xie, H., Zhang, C., Lin, B., et al. (2014). Single nucleotide polymorphisms in the metastasis-associated in colon cancer-1 gene predict the recurrence of hepatocellular carcinoma after transplantation. International Journal of Medical Sciences, 11(2), 142–150.  https://doi.org/10.7150/ijms.7142.Google Scholar
  135. 135.
    Galimi, F., Torti, D., Sassi, F., Isella, C., Corà, D., Gastaldi, S., et al. (2011). Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to met inhibition in patient xenografts and pathologic correlations. Clinical Cancer Research, 17, 3146–3156.  https://doi.org/10.1158/1078-0432.CCR-10-3377.Google Scholar
  136. 136.
    Fabris, L., Cadamuro, M., Libbrecht, L., Raynaud, P., Spirli, C., Fiorotto, R., et al. (2008). Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology, 47(2), 719–728.  https://doi.org/10.1002/hep.22015.Google Scholar
  137. 137.
    Sleeman, J. P., & Thiele, W. (2009). Tumor metastasis and the lymphatic vasculature. International Journal of Cancer, 125(12), 2747–2756.  https://doi.org/10.1002/ijc.24702.Google Scholar
  138. 138.
    Alishekevitz, D., Gingis-Velitski, S., Kaidar-Person, O., Gutter-Kapon, L., Scherer, S. D., Raviv, Z., et al. (2016). Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Reports, 17(5), 1344–1356.  https://doi.org/10.1016/j.celrep.2016.09.083.Google Scholar
  139. 139.
    Lin, L., Huang, H., Liao, W., Ma, H., Liu, J., Wang, L., et al. (2015). MACC1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene, 34(21), 2700–2710.  https://doi.org/10.1038/onc.2014.204.Google Scholar
  140. 140.
    Liu, J., Pan, C., Guo, L., Wu, M., Guo, J., Peng, S., et al. (2016). A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. Journal of Hematology & Oncology, 9(1), 76.  https://doi.org/10.1186/s13045-016-0302-1.Google Scholar
  141. 141.
    Ji, D., Lu, Z. T., Li, Y. Q., Liang, Z. Y., Zhang, P. F., Li, C., et al. (2014). MACC1 expression correlates with PFKFB2 and survival in hepatocellular carcinoma. Asian Pacific Journal of Cancer Prevention, 15, 999–1003.  https://doi.org/10.7314/APJCP.2014.15.2.999.Google Scholar
  142. 142.
    Li, Y., Lu, Z., Liang, Z., Ji, D., Zhang, P., Liu, Q., et al. (2015). Metastasis-associated in colon cancer-1 is associated with poor prognosis in hepatocellular carcinoma, partly by promoting proliferation through enhanced glucose metabolism. Molecular Medicine Reports, 12, 426–434.  https://doi.org/10.3892/mmr.2015.3416.Google Scholar
  143. 143.
    Duan, J., Sun, L., Zhao, L., Liao, W. W., Liao, Y., Duan Jiangman, S. L., Liang, Z., Liao, W., Jing, L., Liao, Y., & Liao, W. (2014). Participation of metastasis-associated in colon cancer-1 gene on lipogenesis and chemoresistance of gastric cancer. Journal of Clinical Oncology, 32, e15026.Google Scholar
  144. 144.
    Shay, J. W., & Wright, W. E. (2000). Hayflick, his limit, and cellular ageing. Nature Reviews. Molecular Cell Biology, 1(1), 72–76.  https://doi.org/10.1038/35036093.Google Scholar
  145. 145.
    Blasco, M. A. (2005). Telomeres and human disease: ageing, cancer and beyond. Nature Reviews. Genetics, 6(8), 611–622.  https://doi.org/10.1038/nrg1656.Google Scholar
  146. 146.
    Cong, Y., & Shay, J. W. (2008). Actions of human telomerase beyond telomeres. Cell Research, 18(7), 725–732.  https://doi.org/10.1038/cr.2008.74.Google Scholar
  147. 147.
    Hannen, R., & Bartsch, J. W. (2018). Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Letters, 592(12), 2023–2031.  https://doi.org/10.1002/1873-3468.13084.Google Scholar
  148. 148.
    Park, J. I., Venteicher, A. S., Hong, J. Y., Choi, J., Jun, S., Shkreli, M., et al. (2009). Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 460(7251), 66–72.  https://doi.org/10.1038/nature08137.Google Scholar
  149. 149.
    Liu, Z., Li, Q., Li, K., Chen, L., Li, W., Hou, M., et al. (2013). Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene, 32(36), 4203–4213.  https://doi.org/10.1038/onc.2012.441.Google Scholar
  150. 150.
    Yu, L., Liu, S., Zhang, C., Zhang, B., Simoes, B. M., Eyre, R., et al. (2013). Enrichment of human osteosarcoma stem cells based on hTERT transcriptional activity. Oncotarget, 4(12), 2326–2338.  https://doi.org/10.18632/oncotarget.1554.Google Scholar
  151. 151.
    Zhang, K., Guo, Y., Wang, X., Zhao, H., Ji, Z., Cheng, C., et al. (2017). WNT/beta-Catenin directs self-renewal symmetric cell division of hTERT(high) prostate cancer stem cells. Cancer Research, 77(9), 2534–2547.  https://doi.org/10.1158/0008-5472.CAN-16-1887.Google Scholar
  152. 152.
    Zhou, L., Yu, L., Zhu, B., Wu, S., Song, W., Gong, X., et al. (2016). Metastasis-associated in colon cancer-1 and aldehyde dehydrogenase 1 are metastatic and prognostic biomarker for non-small cell lung cancer. BMC Cancer, 16(1), 876.  https://doi.org/10.1186/s12885-016-2903-z.Google Scholar
  153. 153.
    Evran, E., Sahin, H., Akbas, K., Cigdem, S., & Gunduz, E. (2016). Investigation of MACC1 gene expression in head and neck cancer and cancer stem cells. Clinical and Investigative Medicine, 39(6), 27506.  https://doi.org/10.25011/cim.v39i6.27506.Google Scholar
  154. 154.
    Yu, L., Zhu, B., Wu, S., Zhou, L., Song, W., Gong, X., et al. (2017). Evaluation of the correlation of vasculogenic mimicry, ALDH1, KiSS-1, and MACC1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagnostic Pathology, 12(1), 23.  https://doi.org/10.1186/s13000-017-0612-9.Google Scholar
  155. 155.
    Nair, R. M., Balla, M. M., Khan, I., Kalathur, R. K. R., Kondaiah, P., & Vemuganti, G. K. (2017). In vitro characterization of CD133(lo) cancer stem cells in retinoblastoma Y79 cell line. BMC Cancer, 17(1), 779.  https://doi.org/10.1186/s12885-017-3750-2.Google Scholar
  156. 156.
    Juneja, M., Kobelt, D., Walther, W., Voss, C., Smith, J., Specker, E., et al. (2017). Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biology, 15(6), e2000784.  https://doi.org/10.1371/journal.pbio.2000784.Google Scholar
  157. 157.
    Melvin, V. S., Feng, W., Hernandez-Lagunas, L., Artinger, K. B., & Williams, T. (2013). A morpholino-based screen to identify novel genes involved in craniofacial morphogenesis. Developmental Dynamics, 242(7), 817–831.  https://doi.org/10.1002/dvdy.23969.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Harikrishnan Radhakrishnan
    • 1
  • Wolfgang Walther
    • 1
    • 2
  • Fabian Zincke
    • 1
    • 2
  • Dennis Kobelt
    • 1
    • 2
  • Francesca Imbastari
    • 1
  • Müge Erdem
    • 1
  • Benedikt Kortüm
    • 1
  • Mathias Dahlmann
    • 1
    • 2
  • Ulrike Stein
    • 1
    • 2
    Email author
  1. 1.Experimental and Clinical Research CenterCharité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular MedicineBerlinGermany
  2. 2.German Cancer Consortium (DKTK), German Cancer Research CenterHeidelbergGermany

Personalised recommendations