Cancer and Metastasis Reviews

, Volume 37, Issue 4, pp 791–804 | Cite as

Perspectives on the role of brain cellular players in cancer-associated brain metastasis: translational approach to understand molecular mechanism of tumor progression

  • Masoom Raza
  • Peeyush Prasad
  • Pragya Gupta
  • Naveen Kumar
  • Taruna Sharma
  • Mandeep Rana
  • Aaron GoldmanEmail author
  • Seema SehrawatEmail author


Brain metastasis is one of the leading causes of death among cancer patients. Cancer cells migrate to various sites and harbor different niche in the body which help cancer cells in their survival. The brain is one of the safest place where cancer cells are protected from immune cells. Breast, lung, and melanoma cancer cells have high propensity to migrate towards the brain. To enter the brain, cancer cells have to cross the blood brain barrier. Survival and finding new niche in the brain are directed by several mechanisms in which different cellular players take part such as astrocytes, microglia, Schwann cells, satellite cells, oligodendrocytes, and ependymal cells. Usually, cancer cells highjack the machinery of brain cellular players to survive in the brain environment. It has been shown that co-culture of M2 macrophage with cancer cells leads to increased proliferation and survival of cancer cells. One of the challenges of understanding brain metastasis is appropriate model system to understand dynamic interaction of cancer cells and brain cellular players. To meet this challenge, microfluidic-based devices are employed which can mimic the dynamic conditions as well as can be used for culturing human cells for personalized therapy. In this review, we have systematically reviewed the current status of the role of cellular players in brain metastasis along with explaining how translational approach of microfluidics can be employed for finding new drug target as well as biomarker for brain metastasis. Finally, we have also commented on the mechanism of action of drugs against brain metastasis.


Brain metastasis Astrocytes Microglia Microfluidics Blood brain barrier Neural niche 


Funding information

Seema Sehrawat is the recipient of BioCARe award from the Department of Biotechnology, Govt. of India. Shiv Nadar Foundation is acknowledged for providing the PhD fellowship to Mr. Masoom Raza, Mr. Naveen Kumar, and Mr. Peeyush Prasad. Aaron Goldman is supported by the Breast Cancer Alliance Young Investigator Award.

Compliance with ethical standards

Conflict of interest

AG is an employee of the Mitra Biotech and holds equity. All other authors declare no conflict of interest.


  1. 1.
    Lassman, A. B., & DeAngelis, L. M. (2003). Brain metastases. Neurologic Clinics, 21(1), 1–23.Google Scholar
  2. 2.
    Murrell, D., Foster, PJ., and Chambers, Ann F. (2014). Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications. Medical Biophysics Publications. Paper 36.Google Scholar
  3. 3.
    Nayak, L., Lee, E. Q., & Wen, P. Y. (2012). Epidemiology of brain metastases. Current Oncology Reports, 14(1), 48–54.Google Scholar
  4. 4.
    Markwell, S. M., & Weed, S. A. (2015). Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers, 7(1), 382–406.Google Scholar
  5. 5.
    Miller, S., Senior, P. V., Prakash, M., Apostolopoulos, V., Sakkal, S., & Nurgali, K. (2016). Leukocyte populations and IL-6 in the tumor microenvironment of an orthotopic colorectal cancer model. Acta Biochimica et Biophysica Sinica, 48(4), 334–341.Google Scholar
  6. 6.
    Place, A. E., Huh, S. J., & Polyak, K. (2011). The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Research, 13(6), 227.Google Scholar
  7. 7.
    Hoshide, R., & Jandial, R. (2017). The role of the neural niche in brain metastasis. Clinical & Experimental Metastasis, 1–8.Google Scholar
  8. 8.
    Madden, K. S., Szpunar, M. J., & Brown, E. B. (2011). β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines. Breast Cancer Research and Treatment, 130(3), 747–758.Google Scholar
  9. 9.
    Wong, H. P. S., Yu, L., Lam, E. K. Y., Tai, E. K. K., Wu, W. K. K., & Cho, C.-H. (2007). Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activation. Toxicological Sciences, 97(2), 279–287.Google Scholar
  10. 10.
    DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirström, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67.Google Scholar
  11. 11.
    DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9(4), 212.Google Scholar
  12. 12.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.Google Scholar
  13. 13.
    Gupta, G. P., Nguyen, D. X., Chiang, A. C., Bos, P. D., Kim, J. Y., Nadal, C., Gomis, R. R., Manova-Todorova, K., & Massagué, J. (2007). Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 446(7137), 765–770.Google Scholar
  14. 14.
    Reymond, N., d'Água, B. B., & Ridley, A. J. (2013). Crossing the endothelial barrier during metastasis. Nature Reviews Cancer, 13(12), 858–870.Google Scholar
  15. 15.
    Chen, Q., Zhang, X. H.-F., & Massagué, J. (2011). Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 20(4), 538–549.Google Scholar
  16. 16.
    Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Massagué, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009.Google Scholar
  17. 17.
    Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases—translation to new therapies. Nature Reviews Clinical Oncology, 8(6), 344–356.Google Scholar
  18. 18.
    Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica, 119(1), 7–35.Google Scholar
  19. 19.
    Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H.-F., Lee, D. J., Chaft, J. E., Kris, M. G., Huse, J. T., Brogi, E., & Massagué, J. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.Google Scholar
  20. 20.
    Sofroniew, M. V. (2005). Reactive astrocytes in neural repair and protection. The Neuroscientist, 11(5), 400–407.Google Scholar
  21. 21.
    Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32(12), 638–647.Google Scholar
  22. 22.
    Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., S. Jacob, L., Patwa, R., Shah, H., Xu, K., Cross, J. R., & Massagué, J. (2016). Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.Google Scholar
  23. 23.
    Wang, L., Cossette, S. M., Rarick, K. R., Gershan, J., Dwinell, M. B., Harder, D. R., & Ramchandran, R. (2013). Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One, 8(12), e80933. Scholar
  24. 24.
    Malanchi, I., & Huelsken, J. (2009). Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 21(1), 41–46.Google Scholar
  25. 25.
    Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311(5769), 1880–1885.Google Scholar
  26. 26.
    Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66(9), 4553–4557.Google Scholar
  27. 27.
    Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441(7097), 1075–1079.Google Scholar
  28. 28.
    Gomi, H., Yokoyama, T., & Itohara, S. (2010). Role of GFAP in morphological retention and distribution of reactive astrocytes induced by scrapie encephalopathy in mice. Brain Research, 1312, 156–167.Google Scholar
  29. 29.
    Li, L., Lundkvist, A., Andersson, D., Wilhelmsson, U., Nagai, N., Pardo, A. C., Nodin, C., Ståhlberg, A., Aprico, K., Larsson, K., Yabe, T., Moons, L., Fotheringham, A., Davies, I., Carmeliet, P., Schwartz, J. P., Pekna, M., Kubista, M., Blomstrand, F., Maragakis, N., Nilsson, M., & Pekny, M. (2008). Protective role of reactive astrocytes in brain ischemia. Journal of Cerebral Blood Flow & Metabolism, 28(3), 468–481.Google Scholar
  30. 30.
    Perry, V. H., & Teeling, J. (2013). Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Seminars in Immunopathology, 35(5), 601–612. Scholar
  31. 31.
    Leitinger, N., & Schulman, I. G. (2013). Phenotypic polarization of macrophages in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(6), 1120–1126.Google Scholar
  32. 32.
    Ellert-Miklaszewska, A., Dabrowski, M., Lipko, M., Sliwa, M., Maleszewska, M., & Kaminska, B. (2013). Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia, 61(7), 1178–1190.Google Scholar
  33. 33.
    Gabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., & Kaminska, B. (2011). Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One, 6(8), e23902.Google Scholar
  34. 34.
    Takeda, K., & Akira, S. (2000). STAT family of transcription factors in cytokine-mediated biological responses. Cytokine & Growth Factor Reviews, 11(3), 199–207.Google Scholar
  35. 35.
    Wei, J., Gabrusiewicz, K., & Heimberger, A. (2013). The controversial role of microglia in malignant gliomas. Clinical and Developmental Immunology, 2013, 285246.Google Scholar
  36. 36.
    Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.Google Scholar
  37. 37.
    Juedes, A. E., & Ruddle, N. H. (2001). Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. The Journal of Immunology, 166(8), 5168–5175.Google Scholar
  38. 38.
    Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., & Matre, R. (1994). Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. Journal of Leukocyte Biology, 56(6), 732–740.Google Scholar
  39. 39.
    Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. The Journal of Immunology, 164(12), 6166–6173.Google Scholar
  40. 40.
    Pace, J., & Russell, S. (1981). Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. The Journal of Immunology, 126(5), 1863–1867.Google Scholar
  41. 41.
    Feng, X., Szulzewsky, F., Yerevanian, A., Chen, Z., Heinzmann, D., Rasmussen, R. D., et al. (2015). Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 6(17), 15077.Google Scholar
  42. 42.
    Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.Google Scholar
  43. 43.
    Brantley, E. C., & Benveniste, E. N. (2008). Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Molecular Cancer Research, 6(5), 675–684.Google Scholar
  44. 44.
    Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mulé, J., Kerr, W. G., Jove, R., Pardoll, D., & Yu, H. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine, 11(12), 1314–1321.Google Scholar
  45. 45.
    Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.Google Scholar
  46. 46.
    Komohara, Y., Ohnishi, K., Kuratsu, J., & Takeya, M. (2008). Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. The Journal of Pathology, 216(1), 15–24.Google Scholar
  47. 47.
    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386.Google Scholar
  48. 48.
    Zhou, W., & Slingerland, J. M. (2014). Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nature Reviews Cancer, 14(1), 26–38.Google Scholar
  49. 49.
    Witzel, I., Oliveira-Ferrer, L., Pantel, K., Müller, V., & Wikman, H. (2016). Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Research : BCR, 18, 8. Scholar
  50. 50.
    Kaiser, J. (2010). Cancer’s circulation problem. American Association for the Advancement of Science.Google Scholar
  51. 51.
    Holmes, K., Roberts, O. L., Thomas, A. M., & Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular Signalling, 19(10), 2003–2012.Google Scholar
  52. 52.
    Chung, A. S., Lee, J., & Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Reviews Cancer, 10(7), 505–514.Google Scholar
  53. 53.
    Brusselmans, K., Bono, F., Collen, D., Herbert, J.-M., Carmeliet, P., & Dewerchin, M. (2005). A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. Journal of Biological Chemistry, 280(5), 3493–3499.Google Scholar
  54. 54.
    Gerber, H.-P., Malik, A. K., Solar, G. P., Sherman, D., Liang, X. H., Meng, G., Hong, K., Marsters, J. C., & Ferrara, N. (2002). VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature, 417(6892), 954–958.Google Scholar
  55. 55.
    He, S., Nakada, D., & Morrison, S. J. (2009). Mechanisms of stem cell self-renewal. Annual Review of Cell and Developmental Biology, 25(1), 377–406. Scholar
  56. 56.
    Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S., & Blau, H. M. (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456(7221), 502–506.Google Scholar
  57. 57.
    Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., Shi, Q., McLendon, R. E., Bigner, D. D., & Rich, J. N. (2006). Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.Google Scholar
  58. 58.
    Zhao, D., Pan, C., Sun, J., Gilbert, C., Drews-Elger, K., Azzam, D., et al. (2015). VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene, 34(24), 3107–3119.Google Scholar
  59. 59.
    De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., & Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science, 255(5047), 989–991.Google Scholar
  60. 60.
    Fong, G.-H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66–70.Google Scholar
  61. 61.
    Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X.-F., Breitman, M. L., & Schuh, A. C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376(6535), 62–66.Google Scholar
  62. 62.
    Olsson, A.-K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling? In control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371.Google Scholar
  63. 63.
    Hamerlik, P., Lathia, J. D., Rasmussen, R., Wu, Q., Bartkova, J., Lee, M., Moudry, P., Bartek Jr., J., Fischer, W., Lukas, J., Rich, J. N., & Bartek, J. (2012). Autocrine VEGF–VEGFR2–neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. Journal of Experimental Medicine, 209(3), 507–520.Google Scholar
  64. 64.
    Couzin-Frankel, J., & Ogale, Y. (2011). Once on ‘Fast track,’ avastin now derailed. Science, 333(6039), 143–144. Scholar
  65. 65.
    Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer, 8, 592. Scholar
  66. 66.
    Ebos, J. M., Lee, C. R., & Kerbel, R. S. (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clinical Cancer Research, 15(16), 5020–5025.Google Scholar
  67. 67.
    Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., Negrier, S., Chevreau, C., Solska, E., Desai, A. A., Rolland, F., Demkow, T., Hutson, T. E., Gore, M., Freeman, S., Schwartz, B., Shan, M., Simantov, R., & Bukowski, R. M. (2007). Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of Medicine, 356(2), 125–134.Google Scholar
  68. 68.
    Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S. T., Chen, I., Bycott, P. W., Baum, C. M., & Figlin, R. A. (2007). Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. New England Journal of Medicine, 356(2), 115–124.Google Scholar
  69. 69.
    Zivi, A., Cerbone, L., Recine, F., & Sternberg, C. N. (2012). Safety and tolerability of pazopanib in the treatment of renal cell carcinoma. Expert Opinion on Drug Safety, 11(5), 851–859. Scholar
  70. 70.
    Escudier, B., & Gore, M. (2011). Axitinib for the management of metastatic renal cell carcinoma. Drugs in R&D, 11(2), 113–126. Scholar
  71. 71.
    Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. The International Journal of Biochemistry & Cell Biology, 31(10), 1037–1051.Google Scholar
  72. 72.
    Furitsu, T., Tsujimura, T., Tono, T., Ikeda, H., Kitayama, H., Koshimizu, U., Sugahara, H., Butterfield, J. H., Ashman, L. K., & Kanayama, Y. (1993). Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. The Journal of Clinical Investigation, 92(4), 1736–1744.Google Scholar
  73. 73.
    Yavuz, A. S., Lipsky, P. E., Yavuz, S., Metcalfe, D. D., & Akin, C. (2002). Evidence for the involvement of a hematopoietic progenitor cell in systemic mastocytosis from single-cell analysis of mutations in the c-kit gene. Blood, 100(2), 661–665.Google Scholar
  74. 74.
    Yarden, Y., Kuang, W.-J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T., et al. (1987). Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. The EMBO Journal, 6(11), 3341–3351.Google Scholar
  75. 75.
    Giebel, L., Strunk, K., Holmes, S., & Spritz, R. (1992). Organization and nucleotide sequence of the human KIT (mast/stem cell growth factor receptor) proto-oncogene. Oncogene, 7(11), 2207–2217.Google Scholar
  76. 76.
    Caruana, G., Cambareri, A. C., & Ashman, L. K. (1999). Isoforms of c-kit differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene, 18(40), 5573–5581.Google Scholar
  77. 77.
    Heldin, C.-H., Östman, A., & Rönnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1378(1), F79–F113.Google Scholar
  78. 78.
    Heldin, C.-H., & Westermark, B. (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 79(4), 1283–1316.Google Scholar
  79. 79.
    Dibb, N. J., Dilworth, S. M., & Mol, C. D. (2004). Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nature Reviews Cancer, 4(9), 718–727.Google Scholar
  80. 80.
    Chen, Z., Xu, X., & Hu, J. (2016). Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy. Neoplasma, 63(2), 173–182.Google Scholar
  81. 81.
    Borea, P. A., Gessi, S., Merighi, S., & Varani, K. (2016). Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends in Pharmacological Sciences, 37(6), 419–434.Google Scholar
  82. 82.
    Antonioli, L., Blandizzi, C., Pacher, P., & Haskó, G. (2013). Immunity, inflammation and cancer: a leading role for adenosine. Nature Reviews Cancer, 13(12), 842–857.Google Scholar
  83. 83.
    Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2017). Pathologic overproduction: the bad side of adenosine. British Journal of Pharmacology., 174, 1945–1960.Google Scholar
  84. 84.
    Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2), 127–137.Google Scholar
  85. 85.
    Herbst, R. S., & Shin, D. M. (2002). Monoclonal antibodies to target epidermal growth factor receptor–positive tumors. Cancer, 94(5), 1593–1611.Google Scholar
  86. 86.
    Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4(12), 988–1004.Google Scholar
  87. 87.
    Nishinaka, T., & Yabe-Nishimura, C. (2001). EGF receptor-ERK pathway is the major signaling pathway that mediates upregulation of aldose reductase expression under oxidative stress. Free Radical Biology and Medicine, 31(2), 205–216.Google Scholar
  88. 88.
    Kumar, N., Prasad, P., Jash, E., Jayasundar, S., Singh, I., Alam, N., Murmu, N., Somashekhar, S. P., Goldman, A., & Sehrawat, S. (2018). cAMP regulated EPAC1 supports microvascular density, angiogenic and metastatic properties in a model of triple negative breast cancer. Carcinogenesis.
  89. 89.
    Majumder, B., Baraneedharan, U., Thiyagarajan, S., Radhakrishnan, P., Narasimhan, H., Dhandapani, M., Brijwani, N., Pinto, D. D., Prasath, A., Shanthappa, B. U., Thayakumar, A., Surendran, R., Babu, G. K., Shenoy, A. M., Kuriakose, M. A., Bergthold, G., Horowitz, P., Loda, M., Beroukhim, R., Agarwal, S., Sengupta, S., Sundaram, M., & Majumder, P. K. (2015). Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nature Communications, 6, 6169. Scholar
  90. 90.
    Kaiser, J. (2010). Cancer’s circulation problem. Science, 327(5969), 1072–1074. Scholar
  91. 91.
    Stott, S. L., Hsu, C.-H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., Rothenberg, S. M., Shah, A. M., Smas, M. E., Korir, G. K., Floyd, F. P., Gilman, A. J., Lord, J. B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L. V., Lee, R. J., Isselbacher, K. J., Maheswaran, S., Haber, D. A., & Toner, M. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences, 107(43), 18392–18397. Scholar
  92. 92.
    Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., Barany, F., & Soper, S. A. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83(6), 2301–2309. Scholar
  93. 93.
    Hoshino, K., Huang, Y.-Y., Lane, N., Huebschman, M., Uhr, J. W., Frenkel, E. P., & Zhang, X. (2011). Microchip-based immunomagnetic detection of circulating tumor cells. Lab on a Chip, 11(20), 3449–3457. Scholar
  94. 94.
    Kang, J. H., Krause, S., Tobin, H., Mammoto, A., Kanapathipillai, M., & Ingber, D. E. (2012). A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab on a Chip, 12(12), 2175–2181. Scholar
  95. 95.
    Zheng, S., Lin, H. K., Lu, B., Williams, A., Datar, R., Cote, R. J., & Tai, Y. C. (2011). 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomedical Microdevices, 13(1), 203–213. Scholar
  96. 96.
    Hou, H. W., Li, Q. S., Lee, G. Y., Kumar, A. P., Ong, C. N., & Lim, C. T. (2009). Deformability study of breast cancer cells using microfluidics. Biomedical Microdevices, 11(3), 557–564. Scholar
  97. 97.
    TruongVo, T. N., Kennedy, R. M., Chen, H., Chen, A., Berndt, A., Agarwal, M., Zhu, L., Nakshatri, H., Wallace, J., Na, S., Yokota, H., & Ryu, J. E. (2017). Microfluidic channel for characterizing normal and breast cancer cells. Journal of Micromechanics and Microengineering, 27(3), 035017.Google Scholar
  98. 98.
    Mak, M., Reinhart-King, C. A., & Erickson, D. (2013). Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab on a Chip, 13(3), 340–348. Scholar
  99. 99.
    Riahi, R., Yang, Y. L., Kim, H., Jiang, L., Wong, P. K., & Zohar, Y. (2014). A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics, 8(2), 024103. Scholar
  100. 100.
    Sun, B., Hu, S., Sun, D., and Lam, R. H. W. (2017). A microfluidic device for isolation and characterization of transendothelial migrating cancer cells. Biomicrofluidics, 11(1):014105.
  101. 101.
    Rothbauer, M., Zirath, H., & Ertl, P. (2018). Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab on a Chip, 18(2), 249–270. Scholar
  102. 102.
    Terrell-Hall, T. B., Ammer, A. G., Griffith, J. I. G., & Lockman, P. R. (2017). Permeability across a novel microfluidic blood-tumor barrier model. Fluids and Barriers of the CNS, 14(1), 3. Scholar
  103. 103.
    Higashimori, H., & Yang, Y. (2012). Imaging analysis of neuron to glia interaction in microfluidic culture platform (MCP)-based neuronal axon and glia co-culture system. Journal of Visualized Experiments: JoVE, 68, 4448. Scholar
  104. 104.
    Pandya, H. J., Dhingra, K., Prabhakar, D., Chandrasekar, V., Natarajan, S. K., Vasan, A. S., Kulkarni, A., & Shafiee, H. (2017). A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosensors & Bioelectronics, 94, 632–642. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Masoom Raza
    • 1
  • Peeyush Prasad
    • 1
  • Pragya Gupta
    • 1
  • Naveen Kumar
    • 1
  • Taruna Sharma
    • 1
  • Mandeep Rana
    • 2
  • Aaron Goldman
    • 3
    • 4
    Email author
  • Seema Sehrawat
    • 1
    • 3
    Email author
  1. 1.Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural SciencesShiv Nadar UniversityNCRIndia
  2. 2.Department of Pediatrics, Division of Pediatric Neurology, Boston University School of MedicineBoston Medical CenterBostonUSA
  3. 3.Department of MedicineHarvard Medical SchoolBostonUSA
  4. 4.Mitra BiotechIntegrative Immuno-Oncology CenterWoburnUSA

Personalised recommendations