Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 4, pp 599–614 | Cite as

A contemporary review of male breast cancer: current evidence and unanswered questions

  • Roberto A. Leon-FerreEmail author
  • Karthik V. Giridhar
  • Tina J. Hieken
  • Robert W. Mutter
  • Fergus J. Couch
  • Rafael E. Jimenez
  • John R. Hawse
  • Judy C. Boughey
  • Kathryn J. Ruddy
Article

Abstract

Male breast cancer is rare, accounting for 1% of all breast cancer diagnoses in the USA. Because of its rarity, most major breast cancer trials have included only female patients. This has resulted in limited prospective data to guide the clinical management of men with breast cancer. As a result, treatment decisions are typically extrapolated from data generated in female patients. This approach may be suboptimal, particularly considering the differing hormonal milieus between men and women with respect to both breast cancer development and treatment. Herein, we summarize current knowledge of the biology and clinicopathology of male breast cancer and review current approaches to locoregional and systemic management of this rare disease.

Keywords

Male breast cancer BRCA Epidemiology Surgery Endocrine therapy Chemotherapy Radiation therapy 

Notes

References

  1. 1.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: a Cancer Journal for Clinicians, 67(1), 7–30.  https://doi.org/10.3322/caac.21387.Google Scholar
  2. 2.
    Howlader, N., Noone, A., Krapcho, M., Miller, D., Bishop, K., Kosary, C., et al. (2017). SEER Cancer statistics review, 1975-2014, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site. Accessed 8/7/2017 2017.
  3. 3.
    Korde, L. A., Zujewski, J. A., Kamin, L., Giordano, S., Domchek, S., Anderson, W. F., et al. (2010). Multidisciplinary meeting on male breast cancer: summary and research recommendations. Journal of Clinical Oncology, 28(12), 2114–2122.  https://doi.org/10.1200/JCO.2009.25.5729.Google Scholar
  4. 4.
    Anderson, W. F., Althuis, M. D., Brinton, L. A., & Devesa, S. S. (2004). Is male breast cancer similar or different than female breast cancer? Breast Cancer Research and Treatment, 83(1), 77–86.  https://doi.org/10.1023/B:BREA.0000010701.08825.2d.Google Scholar
  5. 5.
    Couch, F. J., Farid, L. M., DeShano, M. L., Tavtigian, S. V., Calzone, K., Campeau, L., et al. (1996). BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nature Genetics, 13(1), 123–125.  https://doi.org/10.1038/ng0596-123.Google Scholar
  6. 6.
    Syrjakoski, K., Kuukasjarvi, T., Waltering, K., Haraldsson, K., Auvinen, A., Borg, A., et al. (2004). BRCA2 mutations in 154 finnish male breast cancer patients. Neoplasia, 6(5), 541–545.  https://doi.org/10.1593/neo.04193.Google Scholar
  7. 7.
    Haraldsson, K., Loman, N., Zhang, Q. X., Johannsson, O., Olsson, H., & Borg, A. (1998). BRCA2 germ-line mutations are frequent in male breast cancer patients without a family history of the disease. Cancer Research, 58(7), 1367–1371.Google Scholar
  8. 8.
    Thorlacius, S., Tryggvadottir, L., Olafsdottir, G. H., Jonasson, J. G., Ogmundsdottir, H. M., Tulinius, H., et al. (1995). Linkage to BRCA2 region in hereditary male breast cancer. Lancet, 346(8974), 544–545.Google Scholar
  9. 9.
    Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., et al. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature, 378(6559), 789–792.  https://doi.org/10.1038/378789a0.Google Scholar
  10. 10.
    Gargiulo, P., Pensabene, M., Milano, M., Arpino, G., Giuliano, M., Forestieri, V., et al. (2016). Long-term survival and BRCA status in male breast cancer: a retrospective single-center analysis. BMC Cancer, 16(1), 375.Google Scholar
  11. 11.
    Pritzlaff, M., Summerour, P., McFarland, R., Li, S., Reineke, P., Dolinsky, J. S., et al. (2017). Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Research and Treatment, 161(3), 575–586.Google Scholar
  12. 12.
    Breast Cancer Linkage, C. (1999). Cancer risks in BRCA2 mutation carriers. Journal of the National Cancer Institute, 91(15), 1310–1316.Google Scholar
  13. 13.
    Tai, Y. C., Domchek, S., Parmigiani, G., & Chen, S. (2007). Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. Journal of the National Cancer Institute, 99(23), 1811–1814.  https://doi.org/10.1093/jnci/djm203.Google Scholar
  14. 14.
    Brose, M. S., Rebbeck, T. R., Calzone, K. A., Stopfer, J. E., Nathanson, K. L., & Weber, B. L. (2002). Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. Journal of the National Cancer Institute, 94(18), 1365–1372.Google Scholar
  15. 15.
    Chodick, G., Struewing, J. P., Ron, E., Rutter, J. L., & Iscovich, J. (2008). Similar prevalence of founder BRCA1 and BRCA2 mutations among Ashkenazi and non-Ashkenazi men with breast cancer: evidence from 261 cases in Israel, 1976-1999. European Journal of Medical Genetics, 51(2), 141–147.  https://doi.org/10.1016/j.ejmg.2007.11.001.Google Scholar
  16. 16.
    Fackenthal, J. D., Marsh, D. J., Richardson, A. L., Cummings, S. A., Eng, C., Robinson, B. G., et al. (2001). Male breast cancer in Cowden syndrome patients with germline PTEN mutations. Journal of Medical Genetics, 38(3), 159–164.Google Scholar
  17. 17.
    Anelli, A., Anelli, T. F., Youngson, B., Rosen, P. P., & Borgen, P. I. (1995). Mutations of the p53 gene in male breast cancer. Cancer, 75(9), 2233–2238.Google Scholar
  18. 18.
    Meijers-Heijboer, H., van den Ouweland, A., Klijn, J., Wasielewski, M., de Snoo, A., Oldenburg, R., et al. (2002). Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nature Genetics, 31(1), 55–59.  https://doi.org/10.1038/ng879.Google Scholar
  19. 19.
    Evans, D. B., & Crichlow, R. W. (1987). Carcinoma of the male breast and Klinefelter’s syndrome: is there an association? CA: a Cancer Journal for Clinicians, 37(4), 246–251.Google Scholar
  20. 20.
    Hultborn, R., Hanson, C., Kopf, I., Verbiene, I., Warnhammar, E., & Weimarck, A. (1997). Prevalence of Klinefelter’s syndrome in male breast cancer patients. Anticancer Research, 17(6D), 4293–4297.Google Scholar
  21. 21.
    Network, N. C. C. Genetic/familial high-risk assessment: Breast and ovarian (Version 1.2018). genetic/familial high-risk assessment 1.2018. Accessed November 10, 2017.Google Scholar
  22. 22.
    Llort, G., Chirivella, I., Morales, R., Serrano, R., Sanchez, A. B., Teulé, A., et al. (2015). SEOM clinical guidelines in hereditary breast and ovarian cancer. Clinical and Translational Oncology, 17(12), 956–961.Google Scholar
  23. 23.
    Vermeulen, M. A., Slaets, L., Cardoso, F., Giordano, S. H., Tryfonidis, K., van Diest, P. J., et al. (2017). Pathological characterisation of male breast cancer: results of the EORTC 10085/TBCRC/BIG/NABCG international male breast Cancer program. European Journal of Cancer, 82, 219–227.  https://doi.org/10.1016/j.ejca.2017.01.034.Google Scholar
  24. 24.
    Cardoso, F., Bartlett, J. M. S., Slaets, L., van Deurzen, C. H. M., van Leeuwen-Stok, E., Porter, P., et al. (2017). Characterization of male breast cancer: results of the EORTC 10085/TBCRC/BIG/NABCG international male breast cancer program. Annals of oncology, mdx651-mdx651, doi: https://doi.org/10.1093/annonc/mdx651.
  25. 25.
    Culell, P., Solernou, L., Tarazona, J., Roma, J., Martí, E., Miguel, A., et al. (2007). Male breast cancer: a multicentric study. The Breast Journal, 13(2), 213–215.Google Scholar
  26. 26.
    Fields, E. C., DeWitt, P., Fisher, C. M., & Rabinovitch, R. (2013). Management of male breast cancer in the United States: a surveillance, epidemiology and end results analysis. International Journal of Radiation Oncology* Biology* Physics, 87(4), 747–752.Google Scholar
  27. 27.
    Giordano, S. H., Cohen, D. S., Buzdar, A. U., Perkins, G., & Hortobagyi, G. N. (2004). Breast carcinoma in men: a population-based study. Cancer, 101(1), 51–57.  https://doi.org/10.1002/cncr.20312.Google Scholar
  28. 28.
    Shaaban, A. M., Ball, G. R., Brannan, R. A., Cserni, G., Di Benedetto, A., Dent, J., et al. (2012). A comparative biomarker study of 514 matched cases of male and female breast cancer reveals gender-specific biological differences. Breast Cancer Research and Treatment, 133(3), 949–958.  https://doi.org/10.1007/s10549-011-1856-9.Google Scholar
  29. 29.
    Burga, A. M., Fadare, O., Lininger, R. A., & Tavassoli, F. A. (2006). Invasive carcinomas of the male breast: a morphologic study of the distribution of histologic subtypes and metastatic patterns in 778 cases. Virchows Archiv, 449(5), 507–512.  https://doi.org/10.1007/s00428-006-0305-3.Google Scholar
  30. 30.
    Weigelt, B., Geyer, F. C., & Reis-Filho, J. S. (2010). Histological types of breast cancer: how special are they? Molecular Oncology, 4(3), 192–208.  https://doi.org/10.1016/j.molonc.2010.04.004.Google Scholar
  31. 31.
    Rakha, E. A., Reis-Filho, J. S., Baehner, F., Dabbs, D. J., Decker, T., Eusebi, V., et al. (2010). Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Research, 12(4), 207.  https://doi.org/10.1186/bcr2607.Google Scholar
  32. 32.
    Network, C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.Google Scholar
  33. 33.
    Callari, M., Cappelletti, V., De Cecco, L., Musella, V., Miodini, P., Veneroni, S., et al. (2011). Gene expression analysis reveals a different transcriptomic landscape in female and male breast cancer. Breast Cancer Research and Treatment, 127(3), 601–610.Google Scholar
  34. 34.
    Johansson, I., Nilsson, C., Berglund, P., Lauss, M., Ringnér, M., Olsson, H., et al. (2012). Gene expression profiling of primary male breast cancers reveals two unique subgroups and identifies N-acetyltransferase-1 (NAT1) as a novel prognostic biomarker. Breast Cancer Research, 14(1), R31.Google Scholar
  35. 35.
    Piscuoglio, S., Ng, C. K., Murray, M. P., Guerini-Rocco, E., Martelotto, L. G., Geyer, F. C., et al. (2016). The genomic landscape of male breast cancers. Clinical Cancer Research, 22(16), 4045–4056.Google Scholar
  36. 36.
    Denkert, C., von Minckwitz, G., Darb-Esfahani, S., Ingold Heppner, B., Klauschen, F., Furlanetto, J., et al. (2017). Abstract S1-09: Evaluation of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarker in different subtypes of breast cancer treated with neoadjuvant therapy - a metaanalysis of 3771 patients. Cancer research, 77(4 Supplement), S1-09-S01-09, doi: https://doi.org/10.1158/1538-7445.sabcs16-s1-09.
  37. 37.
    Denkert, C., Loibl, S., Noske, A., Roller, M., Muller, B. M., Komor, M., et al. (2010). Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of Clinical Oncology, 28(1), 105–113.  https://doi.org/10.1200/JCO.2009.23.7370.Google Scholar
  38. 38.
    Yamaguchi, R., Tanaka, M., Yano, A., Tse, G. M., Yamaguchi, M., Koura, K., et al. (2012). Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Human Pathology, 43(10), 1688–1694.  https://doi.org/10.1016/j.humpath.2011.12.013.Google Scholar
  39. 39.
    West, N. R., Milne, K., Truong, P. T., Macpherson, N., Nelson, B. H., & Watson, P. H. (2011). Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Research, 13(6), R126.  https://doi.org/10.1186/bcr3072.Google Scholar
  40. 40.
    Ono, M., Tsuda, H., Shimizu, C., Yamamoto, S., Shibata, T., Yamamoto, H., et al. (2012). Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Research and Treatment, 132(3), 793–805.  https://doi.org/10.1007/s10549-011-1554-7.Google Scholar
  41. 41.
    Loi, S., Sirtaine, N., Piette, F., Salgado, R., Viale, G., Van Eenoo, F., et al. (2013). Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 31(7), 860–867.  https://doi.org/10.1200/JCO.2011.41.0902.Google Scholar
  42. 42.
    Loi, S., Michiels, S., Salgado, R., Sirtaine, N., Jose, V., Fumagalli, D., et al. (2014). Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Annals of Oncology, 25(8), 1544–1550.  https://doi.org/10.1093/annonc/mdu112.Google Scholar
  43. 43.
    Adams, S., Gray, R. J., Demaria, S., Goldstein, L., Perez, E. A., Shulman, L. N., et al. (2014). Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. Journal of Clinical Oncology, 32(27), 2959–2966.  https://doi.org/10.1200/JCO.2013.55.0491.Google Scholar
  44. 44.
    Pruneri, G., Vingiani, A., Bagnardi, V., Rotmensz, N., De Rose, A., Palazzo, A., et al. (2016). Clinical validity of tumor-infiltrating lymphocytes analysis in patients with triple-negative breast cancer. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO, 27(2), 249–256.  https://doi.org/10.1093/annonc/mdv571.Google Scholar
  45. 45.
    Montagna, E., Vingiani, A., Maisonneuve, P., Cancello, G., Contaldo, F., Pruneri, G., et al. (2017). Unfavorable prognostic role of tumor-infiltrating lymphocytes in hormone-receptor positive, HER2 negative metastatic breast cancer treated with metronomic chemotherapy. Breast, 34, 83–88.  https://doi.org/10.1016/j.breast.2017.05.009.Google Scholar
  46. 46.
    Lee, A. H., Gillett, C. E., Ryder, K., Fentiman, I. S., Miles, D. W., & Millis, R. R. (2006). Different patterns of inflammation and prognosis in invasive carcinoma of the breast. Histopathology, 48(6), 692–701.  https://doi.org/10.1111/j.1365-2559.2006.02410.x.Google Scholar
  47. 47.
    Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G., et al. (2015). The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO, 26(2), 259–271.  https://doi.org/10.1093/annonc/mdu450.Google Scholar
  48. 48.
    Zhou, F. F., Xia, L. P., Guo, G. F., Wang, X., Yuan, Z. Y., Zhang, B., et al. (2010). Changes in therapeutic strategies in Chinese male patients with breast cancer: 40 years of experience in a single institute. Breast, 19(6), 450–455.  https://doi.org/10.1016/j.breast.2010.04.007.Google Scholar
  49. 49.
    Schaub, N. P., Maloney, N., Schneider, H., Feliberti, E., & Perry, R. (2008). Changes in male breast cancer over a 30-year period. The American Surgeon, 74(8), 707–711 discussion 711-702.Google Scholar
  50. 50.
    Scott-Conner, C. E., Jochimsen, P. R., Menck, H. R., & Winchester, D. J. (1999). An analysis of male and female breast cancer treatment and survival among demographically identical pairs of patients. Surgery, 126(4), 775–780 discussion 780-771.Google Scholar
  51. 51.
    Sousa, B., Moser, E., & Cardoso, F. (2013). An update on male breast cancer and future directions for research and treatment. European Journal of Pharmacology, 717(1–3), 71–83.  https://doi.org/10.1016/j.ejphar.2013.03.037.Google Scholar
  52. 52.
    Vaysse, C., Sroussi, J., Mallon, P., Feron, J., Rivain, A., Ngo, C., et al. (2012). Prediction of axillary lymph node status in male breast carcinoma. Annals of Oncology, 24(2), 370–376.Google Scholar
  53. 53.
    Leone, J. P., Leone, J., Zwenger, A. O., Iturbe, J., Vallejo, C. T., & Leone, B. A. (2015). Prognostic significance of tumor subtypes in male breast cancer: a population-based study. Breast Cancer Research and Treatment, 152(3), 601–609.Google Scholar
  54. 54.
    Gargiulo, P., Pensabene, M., Milano, M., Arpino, G., Giuliano, M., Forestieri, V., et al. (2016). Long-term survival and BRCA status in male breast cancer: a retrospective single-center analysis. BMC Cancer, 16, 375–375.Google Scholar
  55. 55.
    Golshan, M., Rusby, J., Dominguez, F., & Smith, B. L. (2007). Breast conservation for male breast carcinoma. The Breast, 16(6), 653–656.Google Scholar
  56. 56.
    Boughey, J. C., Bedrosian, I., Meric-Bernstam, F., Ross, M. I., Kuerer, H. M., Akins, J. S., et al. (2006). Comparative analysis of sentinel lymph node operation in male and female breast cancer patients. Journal of the American College of Surgeons, 203(4), 475–480.  https://doi.org/10.1016/j.jamcollsurg.2006.06.014.Google Scholar
  57. 57.
    Cimmino, V. M., Degnim, A. C., Sabel, M. S., Diehl, K. M., Newman, L. A., & Chang, A. E. (2004). Efficacy of sentinel lymph node biopsy in male breast cancer. Journal of Surgical Oncology, 86(2), 74–77.  https://doi.org/10.1002/jso.20045.Google Scholar
  58. 58.
    Cutuli, B., Le-Nir, C. C., Serin, D., Kirova, Y., Gaci, Z., Lemanski, C., et al. (2010). Male breast cancer. Evolution of treatment and prognostic factors. Analysis of 489 cases. Critical Reviews in Oncology/Hematology, 73(3), 246–254.  https://doi.org/10.1016/j.critrevonc.2009.04.002.Google Scholar
  59. 59.
    Gentilini, O., Chagas, E., Zurrida, S., Intra, M., De Cicco, C., Gatti, G., et al. (2007). Sentinel lymph node biopsy in male patients with early breast cancer. Oncologist, 12(5), 512–515.  https://doi.org/10.1634/theoncologist.12-5-512.Google Scholar
  60. 60.
    Flynn, L. W., Park, J., Patil, S. M., Cody 3rd, H. S., & Port, E. R. (2008). Sentinel lymph node biopsy is successful and accurate in male breast carcinoma. Journal of the American College of Surgeons, 206(4), 616–621.  https://doi.org/10.1016/j.jamcollsurg.2007.11.005.Google Scholar
  61. 61.
    Albo, D., Ames, F. C., Hunt, K. K., Ross, M. I., Singletary, S. E., & Kuerer, H. M. (2003). Evaluation of lymph node status in male breast cancer patients: a role for sentinel lymph node biopsy. Breast Cancer Research and Treatment, 77(1), 9–14.Google Scholar
  62. 62.
    Goyal, A., Horgan, K., Kissin, M., Yiangou, C., Sibbering, M., Lansdown, M., et al. (2004). Sentinel lymph node biopsy in male breast cancer patients. European Journal of Surgical Oncology, 30(5), 480–483.  https://doi.org/10.1016/j.ejso.2004.02.006.Google Scholar
  63. 63.
    Port, E. R., Fey, J. V., Cody 3rd, H. S., & Borgen, P. I. (2001). Sentinel lymph node biopsy in patients with male breast carcinoma. Cancer, 91(2), 319–323.Google Scholar
  64. 64.
    De Cicco, C., Baio, S. M., Veronesi, P., Trifiro, G., Ciprian, A., Vento, A., et al. (2004). Sentinel node biopsy in male breast cancer. Nuclear Medicine Communications, 25(2), 139–143.Google Scholar
  65. 65.
    Rusby, J. E., Smith, B. L., Dominguez, F. J., & Golshan, M. (2006). Sentinel lymph node biopsy in men with breast cancer: a report of 31 consecutive procedures and review of the literature. Clinical Breast Cancer, 7(5), 406–410.Google Scholar
  66. 66.
    Giuliano, A. E., Ballman, K. V., McCall, L., Beitsch, P. D., Brennan, M. B., Kelemen, P. R., et al. (2017). Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. Jama, 318(10), 918–926.Google Scholar
  67. 67.
    Donker, M., van Tienhoven, G., Straver, M. E., Meijnen, P., van de Velde, C. J., Mansel, R. E., et al. (2014). Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. The Lancet Oncology, 15(12), 1303–1310.Google Scholar
  68. 68.
    Bratman, S. V., Kapp, D. S., & Horst, K. C. (2012). Evolving trends in the initial locoregional management of male breast cancer. The Breast, 21(3), 296–302.Google Scholar
  69. 69.
    Abrams, M. J., Koffer, P. P., Wazer, D. E., & Hepel, J. T. (2017). Postmastectomy radiation therapy is associated with improved survival in node-positive male breast cancer: a population analysis. International Journal of Radiation Oncology* Biology* Physics, 98(2), 384–391.Google Scholar
  70. 70.
    Stranzl, H., Mayer, R., Quehenberger, F., Prettenhofer, U., Willfurth, P., Stoger, H., et al. (1999). Adjuvant radiotherapy in male breast cancer. Radiotherapy and Oncology, 53(1), 29–35.Google Scholar
  71. 71.
    Atalay, C., Kanlioz, M., & Altinok, M. (2003). Prognostic factors affecting survival in male breast cancer. Journal of Experimental & Clinical Cancer Research, 22(1), 29–33.Google Scholar
  72. 72.
    Yu, E., Suzuki, H., Younus, J., Elfiki, T., Stitt, L., Yau, G., et al. (2012). The impact of post-mastectomy radiation therapy on male breast cancer patients--a case series. International Journal of Radiation Oncology, Biology, Physics, 82(2), 696–700.  https://doi.org/10.1016/j.ijrobp.2011.01.010.Google Scholar
  73. 73.
    Gradishar, W. J., Anderson, B. O., Balassanian, R., Blair, S. L., Burstein, H. J., Cyr, A., et al. (2017). NCCN guidelines insights: breast cancer, version 1.2017. Journal of the National Comprehensive Cancer Network, 15(4), 433–451.Google Scholar
  74. 74.
    Recht, A., Comen, E. A., Fine, R. E., Fleming, G. F., Hardenbergh, P. H., Ho, A. Y., et al. (2016). Postmastectomy radiotherapy: an american society of clinical oncology, american society for radiation oncology, and society of surgical oncology focused guideline update. Practical Radiation Oncology, 6(6), e219–e234.Google Scholar
  75. 75.
    McGale, P., Taylor, C., Correa, C., Cutter, D., Duane, F., Ewertz, M., et al. (2014). Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Elsevier.Google Scholar
  76. 76.
    Marks, L. B., & Prosnitz, L. R. (2013). Reducing local therapy in patients responding to preoperative systemic therapy: are we outsmarting ourselves? Journal of Clinical Oncology, 32(6), 491–493.Google Scholar
  77. 77.
    White, J., & Mamounas, E. (2013). Locoregional radiotherapy in patients with breast cancer responding to neoadjuvant chemotherapy: a paradigm for treatment individualization. Journal of Clinical Oncology, 32(6), 494–495.Google Scholar
  78. 78.
    Haviland, J. S., Owen, J. R., Dewar, J. A., Agrawal, R. K., Barrett, J., Barrett-Lee, P. J., et al. (2013). The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. The Lancet Oncology, 14(11), 1086–1094.Google Scholar
  79. 79.
    Whelan, T. J., Pignol, J.-P., Levine, M. N., Julian, J. A., MacKenzie, R., Parpia, S., et al. (2010). Long-term results of hypofractionated radiation therapy for breast cancer. New England Journal of Medicine, 362(6), 513–520.Google Scholar
  80. 80.
    Bartelink, H., Maingon, P., Poortmans, P., Weltens, C., Fourquet, A., Jager, J., et al. (2015). Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. The Lancet Oncology, 16(1), 47–56.Google Scholar
  81. 81.
    Kunkler, I. H., Williams, L. J., Jack, W. J., Cameron, D. A., Dixon, J. M., & Investigators, P. I. (2015). Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): a randomised controlled trial. The Lancet Oncology, 16(3), 266–273.  https://doi.org/10.1016/S1470-2045(14)71221-5.
  82. 82.
    Hughes, K. S., Schnaper, L. A., Bellon, J. R., Cirrincione, C. T., Berry, D. A., McCormick, B., et al. (2013). Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9343. Journal of Clinical Oncology, 31(19), 2382–2387.Google Scholar
  83. 83.
    Coles, C. E., Griffin, C. L., Kirby, A. M., Titley, J., Agrawal, R. K., Alhasso, A., et al. (2017). Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. The Lancet, 390(10099), 1048–1060.Google Scholar
  84. 84.
    Strnad, V., Ott, O. J., Hildebrandt, G., Kauer-Dorner, D., Knauerhase, H., Major, T., et al. (2016). 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. The Lancet, 387(10015), 229–238.Google Scholar
  85. 85.
    Hieken, T. J., Mutter, R. W., Jakub, J. W., Boughey, J. C., Degnim, A. C., Sukov, W. R., et al. (2016). A novel treatment schedule for rapid completion of surgery and radiation in early-stage breast cancer. Annals of Surgical Oncology, 23(10), 3297–3303.Google Scholar
  86. 86.
    Darby, S. C., Ewertz, M., McGale, P., Bennet, A. M., Blom-Goldman, U., Brønnum, D., et al. (2013). Risk of ischemic heart disease in women after radiotherapy for breast cancer. New England Journal of Medicine, 368(11), 987–998.Google Scholar
  87. 87.
    Taylor, C., Correa, C., Duane, F. K., Aznar, M. C., Anderson, S. J., Bergh, J., et al. (2017). Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. Journal of Clinical Oncology, 35(15), 1641–1649.Google Scholar
  88. 88.
    Beck, R. E., Kim, L., Yue, N. J., Haffty, B. G., Khan, A. J., & Goyal, S. (2014). Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Frontiers in oncology, 4.Google Scholar
  89. 89.
    MacDonald, S. M., Patel, S. A., Hickey, S., Specht, M., Isakoff, S. J., Gadd, M., et al. (2013). Proton therapy for breast cancer after mastectomy: early outcomes of a prospective clinical trial. International Journal of Radiation Oncology* Biology* Physics, 86(3), 484–490.Google Scholar
  90. 90.
    Mutter, R. W., Remmes, N. B., Kahila, M. M., Hoeft, K. A., Pafundi, D. H., Zhang, Y., et al. (2017). Initial clinical experience of postmastectomy intensity modulated proton therapy in patients with breast expanders with metallic ports. Practical Radiation Oncology, 7(4), e243–e252.Google Scholar
  91. 91.
    Giordano, S. H., Perkins, G. H., Broglio, K., Garcia, S. G., Middleton, L. P., Buzdar, A. U., et al. (2005). Adjuvant systemic therapy for male breast carcinoma. Cancer, 104(11), 2359–2364.  https://doi.org/10.1002/cncr.21526.Google Scholar
  92. 92.
    Ribeiro, G., & Swindell, R. (1992). Adjuvant tamoxifen for male breast cancer (MBC). British Journal of Cancer, 65(2), 252–254.Google Scholar
  93. 93.
    Goss, P. E., Reid, C., Pintilie, M., Lim, R., & Miller, N. (1999). Male breast carcinoma: a review of 229 patients who presented to the Princess Margaret Hospital during 40 years: 1955-1996. Cancer, 85(3), 629–639.Google Scholar
  94. 94.
    Ribeiro, G. (1985). Male breast carcinoma--a review of 301 cases from the Christie Hospital & Holt Radium Institute, Manchester. British Journal of Cancer, 51(1), 115–119.Google Scholar
  95. 95.
    Eggemann, H., Ignatov, A., Smith, B. J., Altmann, U., von Minckwitz, G., Rohl, F. W., et al. (2013). Adjuvant therapy with tamoxifen compared to aromatase inhibitors for 257 male breast cancer patients. Breast Cancer Research and Treatment, 137(2), 465–470.  https://doi.org/10.1007/s10549-012-2355-3.Google Scholar
  96. 96.
    Davies, C., Pan, H., Godwin, J., Gray, R., Arriagada, R., Raina, V., et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. The Lancet, 381(9869), 805–816.  https://doi.org/10.1016/S0140-6736(12)61963-1.
  97. 97.
    Gray, R. G., Rea, D., Handley, K., Bowden, S. J., Perry, P., Earl, H. M., et al. (2013). aTTom: long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. American Society of Clinical Oncology.Google Scholar
  98. 98.
    Pemmaraju, N., Munsell, M., Hortobagyi, G., & Giordano, S. (2011). Retrospective review of male breast cancer patients: analysis of tamoxifen-related side-effects. Annals of Oncology, 23(6), 1471–1474.Google Scholar
  99. 99.
    Visram, H., Kanji, F., & Dent, S. (2010). Endocrine therapy for male breast cancer: rates of toxicity and adherence. Current Oncology, 17(5), 17.Google Scholar
  100. 100.
    Moredo Anelli, T. F., Anelli, A., Tran, K. N., Lebwohl, D. E., & Borgen, P. I. (1994). Tamoxifen adminstration is associated with a high rate of treatment-limiting symptoms in male breast cancer patients. Cancer, 74(1), 74–77.Google Scholar
  101. 101.
    Ruddy, K. J., Giobbie-Hurder, A., Giordano, S. H., Goldfarb, S., Kereakoglow, S., Winer, E. P., et al. (2013). Quality of life and symptoms in male breast cancer survivors. The Breast, 22(2), 197–199.Google Scholar
  102. 102.
    Bagley, C. S., Wesley, M. N., Young, R. C., & Lippman, M. E. (1987). Adjuvant chemotherapy in males with cancer of the breast. American Journal of Clinical Oncology, 10(1), 55–60.Google Scholar
  103. 103.
    Walshe, J. M., Berman, A. W., Vatas, U., Steinberg, S. M., Anderson, W. F., Lippman, M. E., et al. (2007). A prospective study of adjuvant CMF in males with node positive breast cancer: 20-year follow-up. Breast Cancer Research and Treatment, 103(2), 177–183.  https://doi.org/10.1007/s10549-006-9363-0.Google Scholar
  104. 104.
    Yildirim, E., & Berberoglu, U. (1998). Male breast cancer: a 22-year experience. European Journal of Surgical Oncology, 24(6), 548–552.Google Scholar
  105. 105.
    Patel 2nd, H. Z., Buzdar, A. U., & Hortobagyi, G. N. (1989). Role of adjuvant chemotherapy in male breast cancer. Cancer, 64(8), 1583–1585.Google Scholar
  106. 106.
    Shak, S., Palmer, G., Baehner, F. L., Millward, C., Watson, D., & Sledge Jr., G. W. (2009). Molecular characterization of male breast cancer by standardized quantitative RT-PCR analysis: First large genomic study of 347 male breast cancers compared to 82,434 female breast cancers. Journal of Clinical Oncology, 27(15_suppl), 549–549.  https://doi.org/10.1200/jco.2009.27.15_suppl.549.Google Scholar
  107. 107.
    Grenader, T., Yerushalmi, R., Tokar, M., Fried, G., Kaufman, B., Peretz, T., et al. (2014). The 21-gene recurrence score assay (Oncotype DX™) in estrogen receptor-positive male breast cancer: experience in an Israeli cohort. Oncology, 87(1), 1–6.Google Scholar
  108. 108.
    Peethambaram, P. P., Hoskin, T. L., Day, C. N., Goetz, M. P., Habermann, E. B., & Boughey, J. C. (2017). Use of 21-gene recurrence score assay to individualize adjuvant chemotherapy recommendations in ER+/HER2− node positive breast cancer—a National Cancer Database study. NPJ breast cancer, 3, 41.Google Scholar
  109. 109.
    Gianni, L., Pienkowski, T., Im, Y. H., Roman, L., Tseng, L. M., Liu, M. C., et al. (2012). Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. The Lancet Oncology, 13(1), 25–32.  https://doi.org/10.1016/S1470-2045(11)70336-9.Google Scholar
  110. 110.
    Baselga, J., Bradbury, I., Eidtmann, H., Di Cosimo, S., de Azambuja, E., Aura, C., et al. (2012). Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet, 379(9816), 633–640.  https://doi.org/10.1016/S0140-6736(11)61847-3.Google Scholar
  111. 111.
    von Minckwitz, G., Procter, M., de Azambuja, E., Zardavas, D., Benyunes, M., Viale, G., et al. (2017). Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. The New England Journal of Medicine, 377(2), 122–131.  https://doi.org/10.1056/NEJMoa1703643.Google Scholar
  112. 112.
    Chan, A., Delaloge, S., Holmes, F. A., Moy, B., Iwata, H., Harvey, V. J., et al. (2016). Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology, 17(3), 367–377.  https://doi.org/10.1016/S1470-2045(15)00551-3.Google Scholar
  113. 113.
    Dear, R. F., McGeechan, K., Jenkins, M. C., Barratt, A., Tattersall, M. H., & Wilcken, N. (2013). Combination versus sequential single agent chemotherapy for metastatic breast cancer. Cochrane Database of Systematic Reviews, 12, CD008792.  https://doi.org/10.1002/14651858.CD008792.pub2.Google Scholar
  114. 114.
    Treves, N. (1959). The treatment of cancer, especially inoperable cancer, of the male breast by ablative surgery (orchiectomy, adrenalec tomy, and hypophysectomy) and hormone therapy (estrogens and corticosteroids); an analysis of 42 patients. Cancer, 12(4), 820–832.Google Scholar
  115. 115.
    Neifeld, J. P., Meyskens, F., Tormey, D. C., & Javadpour, N. (1976). The role of orchiectomy in the management of advanced male breast cancer. Cancer, 37(2), 992–995.Google Scholar
  116. 116.
    Kraybill, W. G., Kaufman, R., & Kinne, D. (1981). Treatment of advanced male breast cancer. Cancer, 47(9), 2185–2189.Google Scholar
  117. 117.
    Kantarjian, H., Yap, H. Y., Hortobagyi, G., Buzdar, A., & Blumenschein, G. (1983). Hormonal therapy for metastatic male breast cancer. Archives of Internal Medicine, 143(2), 237–240.Google Scholar
  118. 118.
    Izquierdo, M. A., Alonso, C., De Andres, L., & Ojeda, B. (1994). Male breast cancer. Report of a series of 50 cases. Acta Oncologica, 33(7), 767–771.Google Scholar
  119. 119.
    Patterson, J. S., Battersby, L. A., & Bach, B. K. (1980). Use of tamoxifen in advanced male breast cancer. Cancer Treatment Reports, 64(6–7), 801–804.Google Scholar
  120. 120.
    Jaiyesimi, I. A., Buzdar, A. U., Sahin, A. A., & Ross, M. A. (1992). Carcinoma of the male breast. Annals of Internal Medicine, 117(9), 771–777.Google Scholar
  121. 121.
    Pemmaraju, N., Munsell, M. F., Hortobagyi, G. N., & Giordano, S. H. (2012). Retrospective review of male breast cancer patients: analysis of tamoxifen-related side-effects. Annals of Oncology, 23(6), 1471–1474.  https://doi.org/10.1093/annonc/mdr459.Google Scholar
  122. 122.
    Giordano, S. H., Valero, V., Buzdar, A. U., & Hortobagyi, G. N. (2002). Efficacy of anastrozole in male breast cancer. American Journal of Clinical Oncology, 25(3), 235–237.Google Scholar
  123. 123.
    Italiano, A., Largillier, R., Marcy, P. Y., Foa, C., Ferrero, J. M., Hartmann, M. T., et al. (2004). Complete remission obtained with letrozole in a man with metastatic breast cancer. La Revue de Médecine Interne, 25(4), 323–324.  https://doi.org/10.1016/j.revmed.2003.12.006.Google Scholar
  124. 124.
    Zabolotny, B. P., Zalai, C. V., & Meterissian, S. H. (2005). Successful use of letrozole in male breast cancer: a case report and review of hormonal therapy for male breast cancer. Journal of Surgical Oncology, 90(1), 26–30.  https://doi.org/10.1002/jso.20233.Google Scholar
  125. 125.
    Doyen, J., Italiano, A., Largillier, R., Ferrero, J. M., Fontana, X., & Thyss, A. (2010). Aromatase inhibition in male breast cancer patients: biological and clinical implications. Annals of Oncology, 21(6), 1243–1245.  https://doi.org/10.1093/annonc/mdp450.Google Scholar
  126. 126.
    Giordano, S. H., & Hortobagyi, G. N. (2006). Leuprolide acetate plus aromatase inhibition for male breast cancer. Journal of Clinical Oncology, 24(21), e42–e43.  https://doi.org/10.1200/JCO.2006.07.2397.Google Scholar
  127. 127.
    Hemsell, D. L., Grodin, J. M., Brenner, P. F., Siiteri, P. K., & MacDonald, P. C. (1974). Plasma precursors of estrogen. II. Correlation of the extent of conversion of plasma androstenedione to estrone with age. J Clin Endocrinol Metab, 38(3), 476–479.  https://doi.org/10.1210/jcem-38-3-476.Google Scholar
  128. 128.
    Nordman, I. C., & Dalley, D. N. (2008). Breast cancer in men: should aromatase inhibitors become first-line hormonal treatment? The Breast Journal, 14(6), 562–569.  https://doi.org/10.1111/j.1524-4741.2008.00648.x.Google Scholar
  129. 129.
    Mauras, N., O'Brien, K. O., Klein, K. O., & Hayes, V. (2000). Estrogen suppression in males: metabolic effects. The Journal of Clinical Endocrinology and Metabolism, 85(7), 2370–2377.  https://doi.org/10.1210/jcem.85.7.6676.Google Scholar
  130. 130.
    Zagouri, F., Sergentanis, T. N., Chrysikos, D., Dimopoulos, M. A., & Psaltopoulou, T. (2015). Fulvestrant and male breast cancer: a pooled analysis. Breast Cancer Research and Treatment, 149(1), 269–275.  https://doi.org/10.1007/s10549-014-3240-z.Google Scholar
  131. 131.
    Finn, R. S., Crown, J. P., Lang, I., Boer, K., Bondarenko, I. M., Kulyk, S. O., et al. (2015). The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. The Lancet Oncology, 16(1), 25–35.  https://doi.org/10.1016/S1470-2045(14)71159-3.Google Scholar
  132. 132.
    Finn, R. S., Martin, M., Rugo, H. S., Jones, S., Im, S. A., Gelmon, K., et al. (2016). Palbociclib and letrozole in advanced breast Cancer. The New England Journal of Medicine, 375(20), 1925–1936.  https://doi.org/10.1056/NEJMoa1607303.Google Scholar
  133. 133.
    Turner, N. C., Ro, J., Andre, F., Loi, S., Verma, S., Iwata, H., et al. (2015). Palbociclib in hormone-receptor-positive advanced breast Cancer. The New England Journal of Medicine, 373(3), 209–219.  https://doi.org/10.1056/NEJMoa1505270.Google Scholar
  134. 134.
    Hortobagyi, G. N., Stemmer, S. M., Burris, H. A., Yap, Y. S., Sonke, G. S., Paluch-Shimon, S., et al. (2016). Ribociclib as first-line therapy for HR-positive, advanced breast Cancer. The New England Journal of Medicine, 375(18), 1738–1748.  https://doi.org/10.1056/NEJMoa1609709.Google Scholar
  135. 135.
    Goetz, M. P., Toi, M., Campone, M., Sohn, J., Paluch-Shimon, S., Huober, J., et al. (2017). MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. Journal of Clinical Oncology, JCO. 2017.2075. 6155.Google Scholar
  136. 136.
    Dickler, M. N., Tolaney, S. M., Rugo, H. S., Cortes, J., Diéras, V., Patt, D. A., et al. (2016). MONARCH1: Results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2-breast cancer, after chemotherapy for advanced disease. American Society of Clinical Oncology.Google Scholar
  137. 137.
    Sorscher, S. (2016). A first case of male breast Cancer responding to combined aromatase inhibitor/palbociclib therapy. International Journal of Cancer and Clinical Research, 3(7).Google Scholar
  138. 138.
    Baselga, J., Campone, M., Piccart, M., Burris 3rd, H. A., Rugo, H. S., Sahmoud, T., et al. (2012). Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. The New England Journal of Medicine, 366(6), 520–529.  https://doi.org/10.1056/NEJMoa1109653.Google Scholar
  139. 139.
    Bachelot, T., Bourgier, C., Cropet, C., Ray-Coquard, I., Ferrero, J. M., Freyer, G., et al. (2012). Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. Journal of Clinical Oncology, 30(22), 2718–2724.  https://doi.org/10.1200/JCO.2011.39.0708.Google Scholar
  140. 140.
    Ballatore, Z., Pistelli, M., Battelli, N., Pagliacci, A., De Lisa, M., Berardi, R., et al. (2016). Everolimus and exemestane in long survival hormone receptor positive male breast cancer: case report. BMC Research Notes, 9(1), 497.  https://doi.org/10.1186/s13104-016-2301-2.Google Scholar
  141. 141.
    Kattan, J., & Kourie, H. R. (2014). The use of everolimus to reverse tamoxifen resistance in men with metastatic breast cancer: a case report. Investigational New Drugs, 32(5), 1046–1047.  https://doi.org/10.1007/s10637-014-0133-2.Google Scholar
  142. 142.
    Giotta, F., Acito, L., Candeloro, G., Del Medico, P., Gadaleta-Caldarola, G., Giordano, G., et al. (2016). Eribulin in male patients with breast cancer: the first report of clinical outcomes. The Oncologist, 21(11), 1298–1305.Google Scholar
  143. 143.
    Yap, H.-Y., Tashima, C. K., Blumenschein, G. R., Hortobagyi, G. N., & Eckles, N. (1980). Chemotherapy for advanced male breast cancer. Jama, 243(17), 1739–1741.Google Scholar
  144. 144.
    Rudlowski, C., Rath, W., Becker, A. J., Wiestler, O. D., & Buttner, R. (2001). Trastuzumab and breast cancer. The New England Journal of Medicine, 345(13), 997–998.Google Scholar
  145. 145.
    Carmona-Bayonas, A. (2007). Potential benefit of maintenance trastuzumab and anastrozole therapy in male advanced breast cancer. Breast, 16(3), 323–325.  https://doi.org/10.1016/j.breast.2006.12.010.Google Scholar
  146. 146.
    Hayashi, H., Kimura, M., Yoshimoto, N., Tsuzuki, M., Tsunoda, N., Fujita, T., et al. (2009). A case of HER2-positive male breast cancer with lung metastases showing a good response to trastuzumab and paclitaxel treatment. Breast Cancer, 16(2), 136–140.  https://doi.org/10.1007/s12282-008-0060-1.Google Scholar
  147. 147.
    Farrow, J. H., & Adair, F. E. (1942). Effect of orchidectomy on skeletal metastases from cancer of the male breast. Science (New York, NY), 95(2478), 654.Google Scholar
  148. 148.
    Kidwai, N., Gong, Y., Sun, X., Deshpande, C. G., Yeldandi, A. V., Rao, M. S., et al. (2003). Expression of androgen receptor and prostate-specific antigen in male breast carcinoma. Breast Cancer Research, 6(1), R18.Google Scholar
  149. 149.
    Di Lauro, L., Barba, M., Pizzuti, L., Vici, P., Sergi, D., Di Benedetto, A., et al. (2015). Androgen receptor and antiandrogen therapy in male breast cancer. Cancer Letters, 368(1), 20–25.Google Scholar
  150. 150.
    Lopez, M., Natali, M., Lauro, L. D., Vici, P., Pignatti, F., & Carpano, S. (1993). Combined treatment with buserelin and cyproterone acetate in metastatic male breast cancer. Cancer, 72(2), 502–505.Google Scholar
  151. 151.
    Di Lauro, L., Vici, P., Barba, M., Pizzuti, L., Sergi, D., Rinaldi, M., et al. (2014). Antiandrogen therapy in metastatic male breast cancer: results from an updated analysis in an expanded case series. Breast Cancer Research and Treatment, 148(1), 73–80.Google Scholar
  152. 152.
    Panet-Raymond, V., Gottlieb, B., Beitel, L. K., Pinsky, L., & Trifiro, M. A. (2000). Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Molecular and Cellular Endocrinology, 167(1–2), 139–150.Google Scholar
  153. 153.
    Robinson, J. L., Macarthur, S., Ross-Innes, C. S., Tilley, W. D., Neal, D. E., Mills, I. G., et al. (2011). Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. The EMBO Journal, 30(15), 3019–3027.  https://doi.org/10.1038/emboj.2011.216.Google Scholar
  154. 154.
    Elebro, K., Borgquist, S., Simonsson, M., Markkula, A., Jirstrom, K., Ingvar, C., et al. (2015). Combined androgen and estrogen receptor status in breast cancer: treatment prediction and prognosis in a population-based prospective cohort. Clinical Cancer Research, 21(16), 3640–3650.  https://doi.org/10.1158/1078-0432.CCR-14-2564.Google Scholar
  155. 155.
    Cochrane, D. R., Bernales, S., Jacobsen, B. M., Cittelly, D. M., Howe, E. N., D'Amato, N. C., et al. (2014). Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Research, 16(1), R7.  https://doi.org/10.1186/bcr3599.Google Scholar
  156. 156.
    Kwiatkowska, E., Teresiak, M., Filas, V., Karczewska, A., Breborowicz, D., & Mackiewicz, A. (2003). BRCA2 mutations and androgen receptor expression as independent predictors of outcome of male breast cancer patients. Clinical Cancer Research, 9(12), 4452–4459.Google Scholar
  157. 157.
    Di Lauro, L., Pizzuti, L., Barba, M., Sergi, D., Sperduti, I., Mottolese, M., et al. (2015). Role of gonadotropin-releasing hormone analogues in metastatic male breast cancer: results from a pooled analysis. Journal of Hematology & Oncology, 8(1), 53.Google Scholar
  158. 158.
    Robson, M., Im, S.-A., Senkus, E., Xu, B., Domchek, S. M., Masuda, N., et al. (2017). Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. New England Journal of Medicine. Google Scholar
  159. 159.
    Litton, J., Rugo, H. S., Hurvitz, S., Gonçalves, A., Lee, K.-H., Fehrenbacher, L., et al. EMBRACA: a phase 3 trial comparing talazoparib, an oral PARP inhibitor, to physician’s choice of therapy in patients with advanced breast cancer and a germline BRCA mutation. In San Antonio Breast Cancer Symposium, San Antonio, TX, 2017 (Vol. Oral Session: General Session 6).Google Scholar
  160. 160.
    Pujade-Lauraine, E., Ledermann, J. A., Selle, F., Gebski, V., Penson, R. T., Oza, A. M., et al. (2017). Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Oncology, 18(9), 1274–1284.Google Scholar
  161. 161.
    Swisher, E. M., Lin, K. K., Oza, A. M., Scott, C. L., Giordano, H., Sun, J., et al. (2017). Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. The Lancet Oncology, 18(1), 75–87.Google Scholar
  162. 162.
    Mirza, M. R., Monk, B. J., Herrstedt, J., Oza, A. M., Mahner, S., Redondo, A., et al. (2016). Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. New England Journal of Medicine, 375(22), 2154–2164.Google Scholar
  163. 163.
    Mateo, J., Carreira, S., Sandhu, S., Miranda, S., Mossop, H., Perez-Lopez, R., et al. (2015). DNA-repair defects and olaparib in metastatic prostate cancer. The New England Journal of Medicine, 2015(373), 1697–1708.Google Scholar
  164. 164.
    Ferzoco, R. M., & Ruddy, K. J. (2015). Optimal delivery of male breast cancer follow-up care: improving outcomes. Breast Cancer: Targets and Therapy, 7, 371.Google Scholar
  165. 165.
    Loren, A. W., Mangu, P. B., Beck, L. N., Brennan, L., Magdalinski, A. J., Partridge, A. H., et al. (2013). Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. Journal of Clinical Oncology, 31(19), 2500–2510.Google Scholar
  166. 166.
    Grenader, T., Goldberg, A., & Shavit, L. (2008). Second cancers in patients with male breast cancer: a literature review. Journal of Cancer Survivorship, 2(2), 73–78.Google Scholar
  167. 167.
    Auvinen, A., Curtis, R. E., & Ron, E. (2002). Risk of subsequent cancer following breast cancer in men. Journal of the National Cancer Institute, 94(17), 1330–1332.Google Scholar
  168. 168.
    Giordano, S. H., Buzdar, A. U., & Hortobagyi, G. N. (2002). Breast cancer in men. Annals of Internal Medicine, 137(8), 678–687.Google Scholar
  169. 169.
    Estala, S. M. (2006). Proposed screening recommendations for male breast cancer. The Nurse Practitioner, 31(2), 62–63.Google Scholar
  170. 170.
    Farrell, E., Borstelmann, N., Meyer, F., Partridge, A., Winer, E., & Ruddy, K. (2014). Male breast cancer networking and telephone support group: A model for supporting a unique population. Psycho-Oncology, 23(8), 956–958.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Roberto A. Leon-Ferre
    • 1
    Email author
  • Karthik V. Giridhar
    • 1
  • Tina J. Hieken
    • 2
  • Robert W. Mutter
    • 3
  • Fergus J. Couch
    • 4
  • Rafael E. Jimenez
    • 4
  • John R. Hawse
    • 5
  • Judy C. Boughey
    • 2
  • Kathryn J. Ruddy
    • 1
  1. 1.Department of Oncology, Mayo ClinicRochesterUSA
  2. 2.Department of Surgery, Mayo ClinicRochesterUSA
  3. 3.Department of Radiation Oncology, Mayo ClinicRochesterUSA
  4. 4.Department of Pathology, Mayo ClinicRochesterUSA
  5. 5.Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUSA

Personalised recommendations