Advertisement

Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells

  • Julian Gomez-Cambronero
Article

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3′-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new “players” in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.

Keywords

Breast cancer Triple negative cell line Matastasis Survival 5-year survival rate Tumor microenvironment Phospholipid Membrane proteins PLD phospholipase D Deadenylase PARN MicroRNAs Exosomes 

Notes

Acknowledgements

The author wishes to thank Krushangi Sha for help with the reference list.

Funding information

This work has been supported in part by a grant from the National Institutes of Health (NIH), HL056653-17.

References

  1. 1.
    Anampa, J., Makower, D., & Sparano, J. A. (2015). Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Medicine, 13, 195.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65, 87–108.Google Scholar
  3. 3.
    Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology, Biomarkers & Prevention: a Publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 19, 1893–1907.CrossRefGoogle Scholar
  4. 4.
    Kimbung, S., Loman, N., & Hedenfalk, I. (2015). Clinical and molecular complexity of breast cancer metastases. Seminars in Cancer Biology, 35, 85–95.PubMedCrossRefGoogle Scholar
  5. 5.
    DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA: a Cancer Journal for Clinicians, 66, 31–42.Google Scholar
  6. 6.
    U.S. Cancer Statistics Working Group. (2015). United States Cancer Statistics: 1999–2012 incidence and mortality web-based report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute.Google Scholar
  7. 7.
    Leone, J. P., & Leone, B. A. (2015). Breast cancer brain metastases: the last frontier. Experimental Hematology & Oncology, 4, 33.CrossRefGoogle Scholar
  8. 8.
    Fan, J., Chen, D., Du, H., Shen, C., & Che, G. (2015). Prognostic factors for resection of isolated pulmonary metastases in breast cancer patients: a systematic review and meta-analysis. Journal of Thoracic Disease, 7, 1441–1451.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Croset, M., Kan, C., & Clezardin, P. (2015). Tumour-derived miRNAs and bone metastasis. BoneKEy Reports, 4, 688.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews. Molecular Cell Biology, 6, 635–645.PubMedCrossRefGoogle Scholar
  11. 11.
    Bredemeier, M., Kasimir-Bauer, S., Kolberg, H. C., Herold, T., Synoracki, S., Hauch, S., Edimiris, P., Bankfalvi, A., Tewes, M., Kimmig, R., & Aktas, B. (2017). Comparison of the PI3KCA pathway in circulating tumor cells and corresponding tumor tissue of patients with metastatic breast cancer. Molecular Medicine Reports, 15, 2957–2968.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hu, J., Banerjee, A., & Goss, D. J. (2005). Assembly of b/HLH/z proteins c-Myc, Max, and Mad1 with cognate DNA: importance of protein-protein and protein-DNA interactions. Biochemistry, 44, 11855–11863.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kim, D., Hong, A., Park, H. I., Shin, W. H., Yoo, L., Jeon, S. J., & Chung, K. C. (2017). Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. Journal of Cellular Physiology, 232, 3664–3676.PubMedCrossRefGoogle Scholar
  14. 14.
    McGee, S. R., Tibiche, C., Trifiro, M., & Wang, E. (2017). Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome. Genomics, Proteomics & Bioinformatics, 15, 121–129.CrossRefGoogle Scholar
  15. 15.
    Ren, J., Jin, F., Yu, Z., Zhao, L., Wang, L., Bai, X., Zhao, H., Yao, W., Mi, X., Wang, E., Olopade, O. I., & Wei, M. (2013). MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 34, 3945–3958.CrossRefGoogle Scholar
  16. 16.
    Samimi, G., Bernardini, M. Q., Brody, L. C., Caga-Anan, C. F., Campbell, I. G., Chenevix-Trench, G., Couch, F. J., Dean, M., de Hullu, J. A., Domchek, S. M., Drapkin, R., Spencer Feigelson, H., Friedlander, M., Gaudet, M. M., Harmsen, M. G., Hurley, K., James, P. A., Kwon, J. S., Lacbawan, F., Lheureux, S., Mai, P. L., Mechanic, L. E., Minasian, L. M., Myers, E. R., Robson, M. E., Ramus, S. J., Rezende, L. F., Shaw, P. A., Slavin, T. P., Swisher, E. M., Takenaka, M., Bowtell, D. D., & Sherman, M. E. (2017). Traceback: a proposed framework to increase identification and genetic counseling of BRCA1 and BRCA2 mutation carriers through family-based outreach. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 2329–2337.CrossRefGoogle Scholar
  17. 17.
    Zacksenhaus, E., Liu, J. C., Jiang, Z., Yao, Y., Xia, L., Shrestha, M., & Ben-David, Y. (2017). Transcription factors in breast cancer—lessons from recent genomic analyses and therapeutic implications. Advances in Protein Chemistry and Structural Biology, 107, 223–273.PubMedCrossRefGoogle Scholar
  18. 18.
    Pulverer, B., Sommer, A., McArthur, G. A., Eisenman, R. N., & Luscher, B. (2000). Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. Journal of Cellular Physiology, 183, 399–410.PubMedCrossRefGoogle Scholar
  19. 19.
    Gomez-Cambronero, J. (2014). Phosphatidic acid, phospholipase D and tumorigenesis. Advances in Biological Regulation, 54, 197–206.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, X., Xu, L., & Zheng, L. (1994). Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. The Journal of Biological Chemistry, 269, 20312–20317.PubMedGoogle Scholar
  21. 21.
    Speranza, F., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2014). The molecular basis of leukocyte adhesion involving phosphatidic acid and phospholipase D. The Journal of Biological Chemistry, 289, 28885–28897.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Henkels, K. M., Boivin, G. P., Dudley, E. S., Berberich, S. J., & Gomez-Cambronero, J. (2013). Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene, 32, 5551–5562.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Meats, J. E., Steele, L., & Bowen, J. G. (1993). Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions, 39 Spec No, C14–C16.PubMedCrossRefGoogle Scholar
  24. 24.
    Joseph, T., Wooden, R., Bryant, A., Zhong, M., Lu, Z., & Foster, D. A. (2001). Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochemical and Biophysical Research Communications, 289, 1019–1024.PubMedCrossRefGoogle Scholar
  25. 25.
    Park, J. B., Lee, C. S., Jang, J. H., Ghim, J., Kim, Y. J., You, S., Hwang, D., Suh, P. G., & Ryu, S. H. (2012). Phospholipase signalling networks in cancer. Nature Reviews. Cancer, 12, 782–792.PubMedCrossRefGoogle Scholar
  26. 26.
    Foster, D. A., & Xu, L. (2003). Phospholipase D in cell proliferation and cancer. Molecular Cancer Research, 1, 789–800.PubMedGoogle Scholar
  27. 27.
    Gomez-Cambronero, J. (2014). Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. The Journal of Biological Chemistry, 289, 22557–22566.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Knoepp, S. M., Chahal, M. S., Xie, Y., Zhang, Z., Brauner, D. J., Hallman, M. A., Robinson, S. A., Han, S., Imai, M., Tomlinson, S., & Meier, K. E. (2008). Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Molecular Pharmacology, 74, 574–584.PubMedCrossRefGoogle Scholar
  29. 29.
    Fite, K., & Gomez-Cambronero, J. (2016). Down-regulation of microRNAs (MiRs) 203, 887, 3619 and 182 prevents vimentin-triggered, phospholipase D (PLD)-mediated cancer cell invasion. The Journal of Biological Chemistry, 291, 719–730.PubMedCrossRefGoogle Scholar
  30. 30.
    Frondorf, K., Henkels, K. M., Frohman, M. A., & Gomez-Cambronero, J. (2010). Phosphatidic acid (PA) is a leukocyte chemoattractant that acts through S6 kinase signaling. The Journal of Biological Chemistry, 285, 15837–15847.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mahankali, M., Peng, H. J., Cox, D., & Gomez-Cambronero, J. (2011). The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Cellular Signalling, 23, 1291–1298.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hatton, N., Lintz, E., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2015). Phosphatidic acid increases epidermal growth factor receptor expression by stabilizing mRNA decay and by inhibiting lysosomal and proteasomal degradation of the internalized receptor. Molecular and Cellular Biology, 35, 3131–3144.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mahankali, M., Farkaly, T., Bedi, S., Hostetler, H. A., & Gomez-Cambronero, J. (2015). Phosphatidic acid (PA) can displace PPARalpha/LXRalpha binding to the EGFR promoter causing its transrepression in luminal cancer cells. Scientific Reports, 5, 15379.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Henkels, K., Taylor, T. E., Ganesan, R., Wilkins, B. A., Fite, K., & Gomez-Cambronero, J. (2016). A phosphatidic acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis. Oncotarget Accepted, in press. Google Scholar
  35. 35.
    Mahankali, M., Henkels, K. M., Speranza, F., & Gomez-Cambronero, J. (2015). A non-mitotic role for aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src. Journal of Cell Science, 128, 516–526.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee, C. S., Bae, Y. S., Lee, S. D., Suh, P. G., & Ryu, S. H. (2001). ATP-induced mitogenesis is modulated by phospholipase D2 through extracellular signal regulated protein kinase dephosphorylation in rat pheochromocytoma PC12 cells. Neuroscience Letters, 313, 117–120.PubMedCrossRefGoogle Scholar
  37. 37.
    Kang, D. W., Lee, J. Y., Oh, D. H., Park, S. Y., Woo, T. M., Kim, M. K., Park, M. H., Jang, Y. H., & Min do, S. (2009). Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells. Experimental & Molecular Medicine, 41, 678–685.CrossRefGoogle Scholar
  38. 38.
    Min, D. S., Kwon, T. K., Park, W. S., Chang, J. S., Park, S. K., Ahn, B. H., Ryoo, Z. Y., Lee, Y. H., Lee, Y. S., Rhie, D. J., Yoon, S. H., Hahn, S. J., Kim, M. S., & Jo, Y. H. (2001). Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis, 22, 1641–1647.PubMedCrossRefGoogle Scholar
  39. 39.
    Burkhardt, U., Beyer, S., & Klein, J. (2015). Role of phospholipases D1 and 2 in astroglial proliferation: effects of specific inhibitors and genetic deletion. European Journal of Pharmacology, 761, 398–404.PubMedCrossRefGoogle Scholar
  40. 40.
    Burkhardt, U., Wojcik, B., Zimmermann, M., & Klein, J. (2013). Phospholipase D is a target for inhibition of astroglial proliferation by ethanol. Neuropharmacology, 79C, 1–9.Google Scholar
  41. 41.
    Chen, Q., Hongu, T., Sato, T., Zhang, Y., Ali, W., Cavallo, J. A., van der Velden, A., Tian, H., Di Paolo, G., Nieswandt, B., Kanaho, Y., & Frohman, M. A. (2012). Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Science Signaling, 5, ra79.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kantonen, S., Hatton, N., Mahankali, M., Henkels, K. M., Park, H., Cox, D., & Gomez-Cambronero, J. (2011). A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Molecular and Cellular Biology, 31, 4524–4537.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Knapek, K., Frondorf, K., Post, J., Short, S., Cox, D., & Gomez-Cambronero, J. (2010). The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Molecular and Cellular Biology, 30, 4492–4506.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yamada, Y., Hamajima, N., Kato, T., Iwata, H., Yamamura, Y., Shinoda, M., Suyama, M., Mitsudomi, T., Tajima, K., Kusakabe, S., Yoshida, H., Banno, Y., Akao, Y., Tanaka, M., & Nozawa, Y. (2003). Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. Journal of Molecular Medicine, 81, 126–131.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao, Y., Ehara, H., Akao, Y., Shamoto, M., Nakagawa, Y., Banno, Y., Deguchi, T., Ohishi, N., Yagi, K., & Nozawa, Y. (2000). Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochemical and Biophysical Research Communications, 278, 140–143.PubMedCrossRefGoogle Scholar
  46. 46.
    Cho, J. H., Hong, S. K., Kim, E. Y., Park, S. Y., Park, C. H., Kim, J. M., Kwon, O. J., Kwon, S. J., Lee, K. S., & Han, J. S. (2008). Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells. Biochimica et Biophysica Acta, 1783, 912–923.PubMedCrossRefGoogle Scholar
  47. 47.
    Riebeling, C., Muller, C., & Geilen, C. C. (2003). Expression and regulation of phospholipase D isoenzymes in human melanoma cells and primary melanocytes. Melanoma Research, 13, 555–562.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen, Y., Zheng, Y., & Foster, D. A. (2003). Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene, 22, 3937–3942.PubMedCrossRefGoogle Scholar
  49. 49.
    Noh, D. Y., Ahn, S. J., Lee, R. A., Park, I. A., Kim, J. H., Suh, P. G., Ryu, S. H., Lee, K. H., & Han, J. S. (2000). Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Letters, 161, 207–214.PubMedCrossRefGoogle Scholar
  50. 50.
    Sanematsu, F., Nishikimi, A., Watanabe, M., Hongu, T., Tanaka, Y., Kanaho, Y., Cote, J. F., & Fukui, Y. (2013). Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. The Journal of Biological Chemistry.Google Scholar
  51. 51.
    Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., Tanaka, Y., Shibasaki, M., Kanaho, Y., Sasaki, T., Frohman, M. A., & Fukui, Y. (2009). Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science, 324, 384–387.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Henkels, K. M., Peng, H. J., Frondorf, K., & Gomez-Cambronero, J. (2010). A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Molecular and Cellular Biology, 30, 2251–2263.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Henkels, K. M., Short, S., Peng, H. J., Di Fulvio, M., & Gomez-Cambronero, J. (2009). PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications, 389, 224–228.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Di Fulvio, M., Frondorf, K., & Gomez-Cambronero, J. (2008). Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Cellular Signalling, 20, 176–185.PubMedCrossRefGoogle Scholar
  55. 55.
    Garcia-Teijido, P., Cabal, M. L., Fernandez, I. P., & Perez, Y. F. (2016). Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clinical Medicine Insights. Oncology, 10, 31–39.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Brady, N. J., Chuntova, P., & Schwertfeger, K. L. (2016). Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast cancer. Mediators of Inflammation, 2016, 4549676.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Buchsbaum, R. J., & Oh, S. Y. (2016). Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers, 8.Google Scholar
  58. 58.
    Bozorgi, A., Khazaei, M., & Khazaei, M. R. (2015). New findings on breast cancer stem cells: a review. Journal of Breast Cancer, 18, 303–312.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kim, I. S., & Zhang, X. H. (2016). One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer Metastasis Reviews, 35, 601–629.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57, 747–751.PubMedCrossRefGoogle Scholar
  61. 61.
    Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196, 254–265.PubMedCrossRefGoogle Scholar
  62. 62.
    DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirstrom, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Beck, A. H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., Varma, S., Marinelli, R. J., van de Rijn, M., & West, R. B. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 15, 778–787.CrossRefGoogle Scholar
  64. 64.
    Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., Au, A., Baehner, F., Chen, Y., Malaka, D. O., Lin, A., Adeyanju, O. O., Li, S., Gong, C., McGrath, M., Olopade, O. I., & Esserman, L. J. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128, 703–711.PubMedCrossRefGoogle Scholar
  65. 65.
    Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., van de Rijn, M., Jensen, K. C., & West, R. B. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123, 397–404.PubMedCrossRefGoogle Scholar
  66. 66.
    Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.PubMedCrossRefGoogle Scholar
  67. 67.
    De Palma, M., & Lewis, C. E. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 23, 277–286.PubMedCrossRefGoogle Scholar
  68. 68.
    Noy, R., & Pollard, J. W. (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41, 49–61.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin, E. Y., Li, J. F., Bricard, G., Wang, W., Deng, Y., Sellers, R., Porcelli, S. A., & Pollard, J. W. (2007). Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Molecular Oncology, 1, 288–302.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., & Coussens, L. M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., Graf, T., Pollard, J. W., Segall, J., & Condeelis, J. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.PubMedCrossRefGoogle Scholar
  73. 73.
    Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., Huang, D., Wu, W., Lin, L., Huang, W., Zhang, J., Cui, X., Zheng, F., Li, H., Yao, H., Su, F., & Song, E. (2014). A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 25, 605–620.PubMedCrossRefGoogle Scholar
  74. 74.
    Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184, 702–712.CrossRefGoogle Scholar
  75. 75.
    Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., Liu, Y., Huang, J. D., & Song, E. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141, 39–51.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., & Pollard, J. W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475, 222–225.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., Lang, R. A., & Pollard, J. W. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4, e6562.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., Mamidi, S., Stonehouse-Usselmann, E., Muller-Molinet, I., Gooi, L., & Goerdt, S. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180, 6553–6565.CrossRefGoogle Scholar
  80. 80.
    Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., & Ivashkiv, L. B. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 29, 691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., Grimmond, S., & Hume, D. A. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168, 44–50.CrossRefGoogle Scholar
  82. 82.
    Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6, 377–384.PubMedCrossRefGoogle Scholar
  83. 83.
    Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175, 342–349.CrossRefGoogle Scholar
  84. 84.
    Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59, 1171–1181.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, T. D., Emde, M., Schmidleithner, L., Ganesan, H., Nino-Castro, A., Mallmann, M. R., Labzin, L., Theis, H., Kraut, M., Beyer, M., Latz, E., Freeman, T. C., Ulas, T., & Schultze, J. L. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40, 274–288.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., Di Serio, C., Naldini, L., & De Palma, M. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114, 901–914.PubMedCrossRefGoogle Scholar
  87. 87.
    Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117, 1155–1166.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMedCrossRefGoogle Scholar
  89. 89.
    Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., Robinson, S. C., & Balkwill, F. R. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. The Journal of Experimental Medicine, 205, 1261–1268.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P. M., Tamagnone, L., & Giordano, S. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205, 1673–1685.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., Ilkovitch, D., Schwendener, R. A., Iragavarapu-Charyulu, V., Cardentey, Y., Strbo, N., & Lopez, D. M. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69, 4800–4809.PubMedCrossRefGoogle Scholar
  92. 92.
    Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.PubMedCrossRefGoogle Scholar
  93. 93.
    Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 33, 119–126.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Van Overmeire, E., Laoui, D., Keirsse, J., Van Ginderachter, J. A., & Sarukhan, A. (2014). Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Frontiers in Immunology, 5, 127.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., Peeters, G., Krummel, M. F., & Werb, Z. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1, 155–167 discussion 165.CrossRefGoogle Scholar
  96. 96.
    Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., Santosuosso, M., Martin, J. D., Martin, M. R., Vianello, F., Leblanc, P., Munn, L. L., Huang, P., Duda, D. G., Fukumura, D., Jain, R. K., & Poznansky, M. C. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109, 17561–17566.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., & Li, M. O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344, 921–925.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., Charles, K., Gordon, S., & Balkwill, F. R. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176, 5023–5032.CrossRefGoogle Scholar
  99. 99.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRefGoogle Scholar
  100. 100.
    Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284, 34342–34354.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., Chen, N. J., & Yang, M. H. (2014). Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26, 534–548.PubMedCrossRefGoogle Scholar
  102. 102.
    Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179, 977–983.CrossRefGoogle Scholar
  103. 103.
    Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., Mack, M., Pipeleers, D., In't Veld, P., De Baetselier, P., & Van Ginderachter, J. A. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70, 5728–5739.PubMedCrossRefGoogle Scholar
  104. 104.
    Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224–2234.PubMedCrossRefGoogle Scholar
  105. 105.
    Obeid, E., Nanda, R., Fu, Y. X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology, 43, 5–12.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., Olson, O. C., Quick, M. L., Huse, J. T., Teijeiro, V., Setty, M., Leslie, C. S., Oei, Y., Pedraza, A., Zhang, J., Brennan, C. W., Sutton, J. C., Holland, E. C., Daniel, D., & Joyce, J. A. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19, 1264–1272.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Galdiero, M. R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., & Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology, 218, 1402–1410.PubMedCrossRefGoogle Scholar
  109. 109.
    Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66, 1–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Laoui, D., Movahedi, K., Van Overmeire, E., Van den Bossche, J., Schouppe, E., Mommer, C., Nikolaou, A., Morias, Y., De Baetselier, P., & Van Ginderachter, J. A. (2011). Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. The International Journal of Developmental Biology, 55, 861–867.PubMedCrossRefGoogle Scholar
  111. 111.
    Achyut, B. R., & Arbab, A. S. (2016). Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. OncoTargets and Therapy, 9, 1047–1055.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11, 91–100.PubMedCrossRefGoogle Scholar
  114. 114.
    Gregory, A. D., & Houghton, A. M. (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Research, 71, 2411–2416.PubMedCrossRefGoogle Scholar
  115. 115.
    De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 10, 4895–4900.CrossRefGoogle Scholar
  116. 116.
    De Larco, J. E., Wuertz, B. R., Yee, D., Rickert, B. L., & Furcht, L. T. (2003). Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 13988–13993.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.PubMedCrossRefGoogle Scholar
  118. 118.
    Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.PubMedCrossRefGoogle Scholar
  119. 119.
    Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–4629.PubMedGoogle Scholar
  120. 120.
    Bingle, L., Lewis, C. E., Corke, K. P., Reed, M. W., & Brown, N. J. (2006). Macrophages promote angiogenesis in human breast tumour spheroids in vivo. British Journal of Cancer, 94, 101–107.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591–5596.PubMedCrossRefGoogle Scholar
  122. 122.
    Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181, 435–440.PubMedCrossRefGoogle Scholar
  123. 123.
    Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Fritz, J. M., Tennis, M. A., Orlicky, D. J., Lin, H., Ju, C., Redente, E. F., Choo, K. S., Staab, T. A., Bouchard, R. J., Merrick, D. T., Malkinson, A. M., & Dwyer-Nield, L. D. (2014). Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Frontiers in Immunology, 5, 587.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRefGoogle Scholar
  126. 126.
    Mantovani, A. (2011). B cells and macrophages in cancer: yin and yang. Nature Medicine, 17, 285–286.PubMedCrossRefGoogle Scholar
  127. 127.
    Gallego-Ortega, D., Ledger, A., Roden, D. L., Law, A. M., Magenau, A., Kikhtyak, Z., Cho, C., Allerdice, S. L., Lee, H. J., Valdes-Mora, F., Herrmann, D., Salomon, R., Young, A. I., Lee, B. Y., Sergio, C. M., Kaplan, W., Piggin, C., Conway, J. R., Rabinovich, B., Millar, E. K., Oakes, S. R., Chtanova, T., Swarbrick, A., Naylor, M. J., O'Toole, S., Green, A. R., Timpson, P., Gee, J. M., Ellis, I. O., Clark, S. J., & Ormandy, C. J. (2015). ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells. PLoS Biology, 13, e1002330.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J., Ciampricotti, M., Hawinkels, L. J., Jonkers, J., & de Visser, K. E. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522, 345–348.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Garcia-Mendoza, M. G., Inman, D. R., Ponik, S. M., Jeffery, J. J., Sheerar, D. S., Van Doorn, R. R., & Keely, P. J. (2016). Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Research: BCR, 18, 49.PubMedCrossRefGoogle Scholar
  130. 130.
    Tabaries, S., Ouellet, V., Hsu, B. E., Annis, M. G., Rose, A. A., Meunier, L., Carmona, E., Tam, C. E., Mes-Masson, A. M., & Siegel, P. M. (2015). Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Research: BCR, 17, 45.PubMedCrossRefGoogle Scholar
  131. 131.
    Marini, O., Spina, C., Mimiola, E., Cassaro, A., Malerba, G., Todeschini, G., Perbellini, O., Scupoli, M., Carli, G., Facchinelli, D., Cassatella, M., Scapini, P., & Tecchio, C. (2016). Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget. Google Scholar
  132. 132.
    Cavallo, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., Modesti, A., & Forni, G. (1992). Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. Journal of Immunology, 149, 3627–3635.Google Scholar
  133. 133.
    Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., Belardelli, F., Forni, G., & Modesti, A. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation: a Journal of Technical Methods and Pathology, 74, 146–157.Google Scholar
  134. 134.
    Colombo, M. P., & Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews, 13, 155–168.CrossRefGoogle Scholar
  135. 135.
    Gajewski, T. F., Louahed, J., & Brichard, V. G. (2010). Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer Journal, 16, 399–403.CrossRefGoogle Scholar
  136. 136.
    Hadden, J. W. (1999). The immunology and immunotherapy of breast cancer: an update. International Journal of Immunopharmacology, 21, 79–101.PubMedCrossRefGoogle Scholar
  137. 137.
    Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65, 8896–8904.PubMedCrossRefGoogle Scholar
  138. 138.
    Di Carlo, E., Rovero, S., Boggio, K., Quaglino, E., Amici, A., Smorlesi, A., Forni, G., & Musiani, P. (2001). Inhibition of mammary carcinogenesis by systemic interleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 7, 830s–837s.Google Scholar
  139. 139.
    Rimando, J., Campbell, J., Kim, J. H., Tang, S. C., & Kim, S. (2016). The pretreatment neutrophil/lymphocyte ratio is associated with all-cause mortality in black and white patients with non-metastatic breast cancer. Frontiers in Oncology, 6, 81.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Benito-Martin, A., Di Giannatale, A., Ceder, S., & Peinado, H. (2015). The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Frontiers in Immunology, 6, 66.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Fite, K., Elkhadragy, L., & Gomez-Cambronero, J. (2016). A repertoire of microRNAs regulates cancer cell starvation by targeting phospholipase D in a feedback loop that operates maximally in cancer cells. Molecular and Cellular Biology, 36, 1078–1089.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Foster, D. A. (2004). Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Review of Anticancer Therapy, 4, 691–701.PubMedCrossRefGoogle Scholar
  143. 143.
    Rodrik, V., Zheng, Y., Harrow, F., Chen, Y., & Foster, D. A. (2005). Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc. Molecular and Cellular Biology, 25, 7917–7925.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.PubMedCrossRefGoogle Scholar
  145. 145.
    Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X. O., & Widmark, A. (2009). Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. British Journal of Cancer, 100, 1603–1607.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kvistborg, P., & Yewdell, J. W. (2018). Enhancing responses to cancer immunotherapy. Science, 359, 516–517.PubMedCrossRefGoogle Scholar
  147. 147.
    Wolchok, J. D., Rollin, L., & Larkin, J. (2017). Nivolumab and ipilimumab in advanced melanoma. The New England Journal of Medicine, 377, 2503–2504.PubMedCrossRefGoogle Scholar
  148. 148.
    Chowell, D., Morris, L. G., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., & Riaz, N. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359, 582–587.PubMedCrossRefGoogle Scholar
  149. 149.
    Robinson, J., Guethlein, L. A., Cereb, N., Yang, S. Y., Norman, P. J., Marsh, S. G., & Parham, P. (2017). Distinguishing functional polymorphism from random variation in the sequences of > 10,000 HLA-A,-B and-C alleles. PLoS Genetics, 13, e1006862.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348, 69–74.PubMedCrossRefGoogle Scholar
  151. 151.
    Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Saenz-Cuesta, M., Mittelbrunn, M., & Otaegui, D. (2015). Editorial: Novel clinical applications of extracellular vesicles. Frontiers in Immunology, 6, 381.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Mittelbrunn, M., & Sanchez-Madrid, F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews. Molecular Cell Biology, 13, 328–335.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Liu, F., Lang, R., Zhao, J., Zhang, X., Pringle, G. A., Fan, Y., Yin, D., Gu, F., Yao, Z., & Fu, L. (2011). CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Research and Treatment, 130, 645–655.PubMedCrossRefGoogle Scholar
  155. 155.
    Fatima, F., & Nawaz, M. (2015). Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 34, 541–553.PubMedCrossRefGoogle Scholar
  156. 156.
    Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: small particle, big player. Journal of Hematology & Oncology, 8, 83.CrossRefGoogle Scholar
  157. 157.
    Ko, J., Carpenter, E., & Issadore, D. (2016). Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. The Analyst, 141, 450–460.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Balaj, L., Lessard, R., Dai, L., Cho, Y. J., Pomeroy, S. L., Breakefield, X. O., & Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications, 2, 180.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O’Connor, S. T., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., & Wang, S. E. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25, 501–515.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Melo, S. A., Sugimoto, H., O'Connell, J. T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L. T., Melo, C. A., Lucci, A., Ivan, C., Calin, G. A., & Kalluri, R. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26, 707–721.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Skog, J., Wurdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., Curry Jr., W. T., Carter, B. S., Krichevsky, A. M., & Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10, 1470–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., Tetta, C., Bussolati, B., & Camussi, G. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71, 5346–5356.PubMedCrossRefGoogle Scholar
  163. 163.
    Ghossoub, R., Lembo, F., Rubio, A., Gaillard, C. B., Bouchet, J., Vitale, N., Slavík, J., Machala, M., & Zimmermann, P. (2014). Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 5, 3477.PubMedCrossRefGoogle Scholar
  164. 164.
    Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.-P., Bonnerot, C., Perret, B., & Record, M. (2004). PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Letters, 572, 11–14.PubMedCrossRefGoogle Scholar
  165. 165.
    Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., & D’Souza-Schorey, C. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology: CB, 19, 1875–1885.PubMedCrossRefGoogle Scholar
  166. 166.
    Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67, 7458–7466.PubMedCrossRefGoogle Scholar
  167. 167.
    Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A. S., Mustapha, R., Niki, T., Guigay, J., Pancre, V., de Launoit, Y., Busson, P., Morales, O., & Delhem, N. (2015). Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. Journal of the National Cancer Institute, 107, 363.PubMedCrossRefGoogle Scholar
  168. 168.
    Ye, S. B., Li, Z. L., Luo, D. H., Huang, B. J., Chen, Y. S., Zhang, X. S., Cui, J., Zeng, Y. X., & Li, J. (2014). Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 5, 5439–5452.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., Brady, M. S., Wolchok, J. D., Chapman, P. B., Kang, Y., Bromberg, J., & Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–891.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Nwabo Kamdje, A. H., Seke Etet, P. F., Vecchio, L., Tagne, R. S., Amvene, J. M., Muller, J. M., Krampera, M., & Lukong, K. E. (2014). New targeted therapies for breast cancer: a focus on tumor microenvironmental signals and chemoresistant breast cancers. World Journal of Clinical Cases, 2, 769–786.PubMedCrossRefGoogle Scholar
  171. 171.
    Neviani, P., & Fabbri, M. (2015). Exosomic microRNAs in the tumor microenvironment. Frontiers in Medicine, 2, 47.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhang, X. M., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., Landis, M. D., Wiechmann, L., Schiff, R., Giuliano, M., Wong, H. L., Fuqua, S. W., Contreras, A., Gutierrez, C., Huang, J., Mao, S. F., Pavlick, A. C., Froehlich, A. M., Wu, M. F., Tsimelzon, A., Hilsenbeck, S. G., Chen, E. S., Zuloaga, P., Shaw, C. A., Rimawi, M. F., Perou, C. M., Mills, G. B., Chang, J. C., & Lewis, M. T. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73, 4885–4897.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ahn, S. G., Jeong, J., Hong, S., & Jung, W. H. (2015). Current issues and clinical evidence in tumor-infiltrating lymphocytes in breast cancer. Journal of Pathology and Translational Medicine, 49, 355–363.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zhang, X. K., Virtanen, A., & Kleiman, F. E. (2010). To polyadenylate or to deadenylate that is the question. Cell Cycle, 9, 4437–4449.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Temme, C., Simonelig, M., & Wahle, E. (2014). Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Frontiers in Genetics, 5.Google Scholar
  176. 176.
    Martinez, J., Ren, Y. G., Thuresson, A. C., Hellman, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. The Journal of Biological Chemistry, 275, 24222–24230.PubMedCrossRefGoogle Scholar
  177. 177.
    Godwin, A. R., Kojima, S., Green, C. B., & Wilusz, J. (2013). Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. Biochimica et Biophysica Acta, 1829, 571–579.PubMedCrossRefGoogle Scholar
  178. 178.
    Martinez, J., Ren, Y. G., Thuresson, A. C., Hellmann, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. Journal of Biological Chemistry, 275, 24222–24230.PubMedCrossRefGoogle Scholar
  179. 179.
    Wilson, T., & Treisman, R. (1988). Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature, 336, 396–399.PubMedCrossRefGoogle Scholar
  180. 180.
    Mitchell, P., & Tollervey, D. (2000). mRNA stability in eukaryotes. Current Opinion in Genetics & Development, 10, 193–198.CrossRefGoogle Scholar
  181. 181.
    Shyu, A. B., Belasco, J. G., & Greenberg, M. E. (1991). Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes & Development, 5, 221–231.CrossRefGoogle Scholar
  182. 182.
    Wolf, J., & Passmore, L. A. (2014). mRNA deadenylation by Pan2-Pan3. Biochemical Society Transactions, 42, 184–187.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Nousch, M., Techritz, N., Hampel, D., Millonigg, S., & Eckmann, C. R. (2013). The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. Journal of Cell Science, 126, 4274–4285.PubMedCrossRefGoogle Scholar
  184. 184.
    Funakoshi, Y., Doi, Y., Hosoda, N., Uchida, N., Osawa, M., Shimada, I., Tsujimoto, M., Suzuki, T., Katada, T., & Hoshino, S. (2007). Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes & Development, 21, 3135–3148.CrossRefGoogle Scholar
  185. 185.
    Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J. L., Atasoy, U., Keene, J. D., & Gorospe, M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8354–8359.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Jalkanen, A. L., Coleman, S. J., & Wilusz, J. (2014). Determinants and implications of mRNA poly(A) tail size—does this protein make my tail look big? Seminars in Cell & Developmental Biology, 34, 24–32.CrossRefGoogle Scholar
  187. 187.
    Zhang, X., Devany, E., Murphy, M. R., Glazman, G., Persaud, M., & Kleiman, F. E. (2015). PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Research, 43, 10925–10938.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2012). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481, 190–194.CrossRefGoogle Scholar
  189. 189.
    Cevher, M. A., Zhang, X., Fernandez, S., Kim, S., Baquero, J., Nilsson, P., Lee, S., Virtanen, A., & Kleiman, F. E. (2010). Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. The EMBO Journal, 29, 1674–1687.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Devany, E., Zhang, X., Park, J. Y., Tian, B., & Kleiman, F. E. (2013). Positive and negative feedback loops in the p53 and mRNA 3′ processing pathways. Proceedings of the National Academy of Sciences of the United States of America, 110, 3351–3356.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Maragozidis, P., Karangeli, M., Labrou, M., Dimoulou, G., Papaspyrou, K., Salataj, E., Pournaras, S., Matsouka, P., Gourgoulianis, K. I., & Balatsos, N. A. (2012). Alterations of deadenylase expression in acute leukemias: evidence for poly(A)-specific ribonuclease as a potential biomarker. Acta Haematologica, 128, 39–46.PubMedCrossRefGoogle Scholar
  192. 192.
    Moraes, K. C., Wilusz, C. J., & Wilusz, J. (2006). CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA, 12, 1084–1091.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Maragozidis, P., Papanastasi, E., Scutelnic, D., Totomi, A., Kokkori, I., Zarogiannis, S. G., Kerenidi, T., Gourgoulianis, K. I., & Balatsos, N. A. (2015). Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression. Molecular Cancer, 14, 187.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., & Chinnaiyan, A. M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., & Park, M. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14, 518–527.PubMedCrossRefGoogle Scholar
  196. 196.
    Mittal, S., Aslam, A., Doidge, R., Medica, R., & Winkler, G. S. (2011). The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Molecular Biology of the Cell, 22, 748–758.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Marx, V. (2018). Meet some code-breakers of noncoding RNAs. Nature Publishing Group.Google Scholar
  198. 198.
    Telonis, A. G., Magee, R., Loher, P., Chervoneva, I., Londin, E., & Rigoutsos, I. (2017). Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Research, 45, 2973–2985.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews. Genetics, 10, 704–714.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Li, Z. H., & Rana, T. M. (2012). Molecular mechanisms of RNA-triggered gene silencing machineries. Accounts of Chemical Research, 45, 1122–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews. Drug Discovery, 12, 847–865.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Ohtsuka, M., Ling, H., Doki, Y., Mori, M., & Calin, G. A. (2015). MicroRNA processing and human cancer. Journal of Clinical Medicine, 4, 1651–1667.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRefGoogle Scholar
  205. 205.
    Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6, 376–385.PubMedCrossRefGoogle Scholar
  206. 206.
    Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.CrossRefGoogle Scholar
  207. 207.
    Hwang, H. W., Wentzel, E. A., & Mendell, J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315, 97–100.PubMedCrossRefGoogle Scholar
  208. 208.
    Eiring, A. M., Harb, J. G., Neviani, P., Garton, C., Oaks, J. J., Spizzo, R., Liu, S., Schwind, S., Santhanam, R., Hickey, C. J., Becker, H., Chandler, J. C., Andino, R., Cortes, J., Hokland, P., Huettner, C. S., Bhatia, R., Roy, D. C., Liebhaber, S. A., Caligiuri, M. A., Marcucci, G., Garzon, R., Croce, C. M., Calin, G. A., & Perrotti, D. (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 140, 652–665.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., & Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309, 1577–1581.PubMedCrossRefGoogle Scholar
  210. 210.
    Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., Fabbri, M., Cimmino, A., Lee, E. J., Wojcik, S. E., Shimizu, M., Tili, E., Rossi, S., Taccioli, C., Pichiorri, F., Liu, X., Zupo, S., Herlea, V., Gramantieri, L., Lanza, G., Alder, H., Rassenti, L., Volinia, S., Schmittgen, T. D., Kipps, T. J., Negrini, M., & Croce, C. M. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12, 215–229.PubMedCrossRefGoogle Scholar
  211. 211.
    Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRefGoogle Scholar
  212. 212.
    Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., & Croce, C. M. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 109, E2110–E2116.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kalin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., & Lehnardt, S. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience, 15, 827–835.PubMedCrossRefGoogle Scholar
  214. 214.
    Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews. Clinical Oncology, 8, 467–477.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Redis, R. S., Calin, S., Yang, Y., You, M. J., & Calin, G. A. (2012). Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacology & Therapeutics, 136, 169–174.CrossRefGoogle Scholar
  217. 217.
    Mendell, J. T., & Olson, E. N. (2012). MicroRNAs in stress signaling and human disease. Cell, 148, 1172–1187.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12, 861–874.PubMedCrossRefGoogle Scholar
  219. 219.
    Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., Teruya-Feldstein, J., Bell, G. W., & Weinberg, R. A. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28, 341–347.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Song, S. J., Poliseno, L., Song, M. S., Ala, U., Webster, K., Ng, C., Beringer, G., Brikbak, N. J., Yuan, X., Cantley, L. C., Richardson, A. L., & Pandolfi, P. P. (2013). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 154, 311–324.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Pencheva, N., & Tavazoie, S. F. (2013). Control of metastatic progression by microRNA regulatory networks. Nature Cell Biology, 15, 546–554.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., & Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 264–269.PubMedCrossRefGoogle Scholar
  223. 223.
    Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., & Peschle, C. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 18081–18086.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467, 86–90.PubMedCrossRefGoogle Scholar
  225. 225.
    Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., & Croce, C. M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7024–7029.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A., Califano, A., Migliazza, A., Bhagat, G., & Dalla-Favera, R. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28–40.PubMedCrossRefGoogle Scholar
  227. 227.
    Mavrakis, K. J., Van Der Meulen, J., Wolfe, A. L., Liu, X., Mets, E., Taghon, T., Khan, A. A., Setty, M., Rondou, P., Vandenberghe, P., Delabesse, E., Benoit, Y., Socci, N. B., Leslie, C. S., Van Vlierberghe, P., Speleman, F., & Wendel, H. G. (2011). A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genetics, 43, 673–678.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.PubMedCrossRefGoogle Scholar
  229. 229.
    Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., & Foster, D. A. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 25, 7305–7310.PubMedCrossRefGoogle Scholar
  230. 230.
    Shi, M., Zheng, Y., Garcia, A., Xu, L., & Foster, D. A. (2007). Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Letters, 258, 268–275.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J. M., Di Padova, F., Lin, S. C., Gram, H., & Han, J. H. (2005). Involvement of MicroRNA in AU-rich element-mediated mRNA instability. Cell, 120, 623–634.PubMedCrossRefGoogle Scholar
  232. 232.
    Braun, J. E., Huntzinger, E., & Izaurralde, E. (2012). A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harbor Perspectives in Biology, 4.Google Scholar
  233. 233.
    Lavieri, R., Scott, S. A., Lewis, J. A., Selvy, P. E., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorganic & Medicinal Chemistry Letters, 19, 2240–2243.CrossRefGoogle Scholar
  234. 234.
    Lewis, J. A., Scott, S. A., Lavieri, R., Buck, J. R., Selvy, P. E., Stoops, S. L., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorganic & Medicinal Chemistry Letters, 19, 1916–1920.CrossRefGoogle Scholar
  235. 235.
    Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W., & Brown, H. A. (2009). Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nature Chemical Biology, 5, 108–117.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Sulzmaier, F. J., Valmiki, M. K. G., Nelson, D. A., Caliva, M. J., Geerts, D., Matter, M. L., White, E. P., & Ramos, J. W. (2012). PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene, 31, 3547–3560.PubMedCrossRefGoogle Scholar
  237. 237.
    Bruntz, R. C., Taylor, H. E., Lindsley, C. W., & Brown, H. A. (2014). Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. Journal of Biological Chemistry, 289, 600–616.PubMedCrossRefGoogle Scholar
  238. 238.
    Han, X., Yu, R., Zhen, D., Tao, S., Schmidt, M., & Han, L. (2011). β-1, 3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PloS One, 6, e21468.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Basiouni, S., Fuhrmann, H., & Schumann, J. (2013). The influence of polyunsaturated fatty acids on the phospholipase D isoforms trafficking and activity in mast cells. International Journal of Molecular Sciences, 14, 9005–9017.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Jiang, Y., Sverdlov, M. S., Toth, P. T., Huang, L. S., Du, G. W., Liu, Y. Y., Natarajan, V., & Minshall, R. D. (2016). Phosphatidic acid produced by RalA-activated PLD2 stimulates caveolae-mediated endocytosis and trafficking in endothelial cells. Journal of Biological Chemistry, 291, 20729–20738.PubMedCrossRefGoogle Scholar
  241. 241.
    Lavieri, R. R., Scott, S. A., Selvy, P. E., Kim, K., Jadhav, S., Morrison, R. I., Daniels, J. S., Brown, H. A., & Lindsley, C. W. (2010). Design, synthesis, and biological evaluation of halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. Journal of Medicinal Chemistry, 53, 6706–6719.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Ganesan, R., Mahankali, M., Alter, G., & Gomez-Cambronero, J. (2015). Two sites of action for PLD2 inhibitors: the enzyme catalytic center and an allosteric, phosphoinositide biding pocket. Biochimica et Biophysica Acta, 1851, 261–272.PubMedCrossRefGoogle Scholar
  243. 243.
    Henkels, K. M., Muppani, N. R., & Gomez-Cambronero, J. (2016). PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS One, 11, e0166553.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Chaves-Moreira, D., de Moraes, F. R., Caruso, Í. P., Chaim, O. M., Senff-Ribeiro, A., Ullah, A., da Silva, L. S., Chahine, J., Arni, R. K., & Veiga, S. S. (2017). Potential implications for designing drugs against the brown spider venom phospholipase-D. Journal of Cellular Biochemistry, 118, 726–738.PubMedCrossRefGoogle Scholar
  245. 245.
    Bonnefond, M.-L., Lambert, B., Giffard, F., Abeilard, E., Brotin, E., Louis, M.-H., Gueye, M. S., Gauduchon, P., Poulain, L., & N’Diaye, M. (2015). Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis, 20, 535–550.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Monovich, L., Mugrage, B., Quadros, E., Toscano, K., Tommasi, R., LaVoie, S., Liu, E., Du, Z., LaSala, D., Boyar, W., & Steed, P. (2007). Optimization of halopemide for phospholipase D2 inhibition. Bioorganic & Medicinal Chemistry Letters, 17, 2310–2311.CrossRefGoogle Scholar
  247. 247.
    Stegner, D., Thielmann, I., Kraft, P., Frohman, M. A., Stoll, G., & Nieswandt, B. (2013). Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke—brief report significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2212–2217.PubMedCrossRefGoogle Scholar
  248. 248.
    Su, W., Yeku, O., Olepu, S., Genna, A., Park, J.-S., Ren, H., Du, G., Gelb, M. H., Morris, A. J., & Frohman, M. A. (2009). 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Molecular Pharmacology, 75, 437–446.PubMedCrossRefGoogle Scholar
  249. 249.
    O'connell, J., O’sullivan, G. C., Collins, J. K., & Shanahan, F. (1996). The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. Journal of Experimental Medicine, 184, 1075–1082.PubMedCrossRefGoogle Scholar
  250. 250.
    Strand, S., Hofmann, W. J., Hug, H., Müller, M., Otto, G., Strand, D., Mariani, S. M., Stremmel, W., Krammer, P. H., & Galle, P. R. (1996). Lymphocyte apoptosis induced by CD95 (APO–1/Fas) ligand–expressing tumor cells—a mechanism of immune evasion? Nature Medicine, 2, 1361.PubMedCrossRefGoogle Scholar
  251. 251.
    Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363, 1938–1948.PubMedCrossRefGoogle Scholar
  252. 252.
    Hudis, C. A., & Gianni, L. (2011). Triple-negative breast cancer: an unmet medical need. The Oncologist, 16, 1–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyWright State University School of MedicineDaytonUSA

Personalised recommendations