Advertisement

Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 355–368 | Cite as

The roles of the COX2/PGE2/EP axis in therapeutic resistance

  • Dali Tong
  • Qiuli Liu
  • Lin-ang Wang
  • Qiubo Xie
  • Jian Pang
  • Yiqiang Huang
  • Luofu Wang
  • Gaolei Liu
  • Dianzheng Zhang
  • Weihua Lan
  • Jun Jiang
Article
  • 101 Downloads

Abstract

Therapeutic resistance has been and remains to be the major challenge in developing successful treatments for different cancers and therefore, understanding the underlying mechanisms in the development of therapeutic resistance is crucial in combating cancers. Multiple mechanisms underlie the development of therapeutic resistance, and the signaling pathways involved in cancer stem cell repopulation, enhanced epithelial-mesenchymal transition (EMT), inflammatory infiltration, and immunosuppression play pivotal roles in this process. Accumulating evidence indicates that the COX2/PGE2/EP axis plays crucial roles not only in tumor development including initiation and progression but also in the development of therapeutic resistance. In this review, we will first dissect the relationship between the COX2/PGE2/EP axis and therapeutic resistance by focusing on the roles of the COX2/PGE2/EP axis in cancer stem cell repopulation, EMT, and anti-cancer immunity. Then, we will summarize the currently available compounds/drugs targeting each component of this axis as well as some of the underlying mechanisms. We hope that better understanding the underlying mechanisms of the functional compounds will be helpful in seeking additive and/or synergistic effects against therapeutic resistance without or with minimal adverse consequence.

Keywords

COX2 PGE2 EP Therapeutic resistance 

Notes

Acknowledgements

This work was supported for Jun Jiang by the National Natural Science Foundation of China (NSFC) (Grant Nos.: 81772704 and 81172442) and Army Healthcare Foundation of China (Grant No.: 17BJZ13) and Dali Tong by NSFC (Grant No.: 81402120).

References

  1. 1.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: a Cancer Journal for Clinicians, 67(1), 7–30.  https://doi.org/10.3322/caac.21387.Google Scholar
  2. 2.
    Lou, F., Huang, J., Sima, C. S., Dycoco, J., Rusch, V., & Bach, P. B. (2013). Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. The Journal of Thoracic and Cardiovascular Surgery, 145(1), 75–81; discussion 81-72.  https://doi.org/10.1016/j.jtcvs.2012.09.030.PubMedGoogle Scholar
  3. 3.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.  https://doi.org/10.1038/nature07205.PubMedGoogle Scholar
  4. 4.
    Chan, A. T., Ogino, S., & Fuchs, C. S. (2009). Aspirin use and survival after diagnosis of colorectal cancer. JAMA, 302(6), 649–658.  https://doi.org/10.1001/jama.2009.1112.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wu, W. K., Sung, J. J., Lee, C. W., Yu, J., & Cho, C. H. (2010). Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Letters, 295(1), 7–16.  https://doi.org/10.1016/j.canlet.2010.03.015.PubMedGoogle Scholar
  6. 6.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.  https://doi.org/10.1038/nrc2809.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen, E. P., & Smyth, E. M. (2011). COX-2 and PGE2-dependent immunomodulation in breast cancer. Prostaglandins & Other Lipid Mediators, 96(1–4), 14–20.  https://doi.org/10.1016/j.prostaglandins.2011.08.005.Google Scholar
  8. 8.
    Steinecker-Frohnwieser, B., Kaltenegger, H., Weigl, L., Mann, A., Kullich, W., Leithner, A., & Lohberger, B. (2017). Pharmacological treatment with diacerein combined with mechanical stimulation affects the expression of growth factors in human chondrocytes. Biochemistry and Biophysics Reports, 11, 154–160.  https://doi.org/10.1016/j.bbrep.2017.06.006.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Peng, Y. J., Shen, T. L., Chen, Y. S., Mersmann, H. J., Liu, B. H., & Ding, S. T. (2018). Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. Journal of Biomedical Science, 25(1), 24.  https://doi.org/10.1186/s12929-018-0419-3.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim, H. S., Moon, H. G., Han, W., Yom, C. K., Kim, W. H., Kim, J. H., & Noh, D. Y. (2012). COX2 overexpression is a prognostic marker for stage III breast cancer. Breast Cancer Research and Treatment, 132(1), 51–59.  https://doi.org/10.1007/s10549-011-1521-3.PubMedGoogle Scholar
  11. 11.
    (2005). PGE2 produced by lung cancer suppresses immune function through T-regulatory cells and can be blocked by the COX2 inhibitor celebrex. Cancer Biology & Therapy, 4(8), v–vi.Google Scholar
  12. 12.
    Banu, N., Buda, A., Chell, S., Elder, D., Moorghen, M., Paraskeva, C., Qualtrough, D., & Pignatelli, M. (2007). Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptor transactivation: possibilities for combination therapy. Cell Proliferation, 40(5), 768–779.  https://doi.org/10.1111/j.1365-2184.2007.00459.x.PubMedGoogle Scholar
  13. 13.
    Cook, P. J., Thomas, R., Kingsley, P. J., Shimizu, F., Montrose, D. C., Marnett, L. J., Tabar, V. S., Dannenberg, A. J., & Benezra, R. (2016). Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma. Neuro-Oncology, 18(10), 1379–1389.  https://doi.org/10.1093/neuonc/now049.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Tong, D., Liu, Q., Liu, G., Xu, J., Lan, W., Jiang, Y., Xiao, H., Zhang, D., & Jiang, J. (2017). Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Letters, 389, 23–32.  https://doi.org/10.1016/j.canlet.2016.12.031.PubMedGoogle Scholar
  15. 15.
    Liu, Q., Yuan, W., Tong, D., Liu, G., Lan, W., Zhang, D., et al. (2016). Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis. Oncotarget, 7(19), 28235–28246.  https://doi.org/10.18632/oncotarget.8595.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ko, C. J., Lan, S. W., Lu, Y. C., Cheng, T. S., Lai, P. F., Tsai, C. H., Hsu, T. W., Lin, H. Y., Shyu, H. Y., Wu, S. R., Lin, H. H., Hsiao, P. W., Chen, C. H., Huang, H. P., & Lee, M. S. (2017). Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene, 36(32), 4597–4609.  https://doi.org/10.1038/onc.2017.82.PubMedGoogle Scholar
  17. 17.
    Harris, R. E., Beebe-Donk, J., & Alshafie, G. A. (2008). Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer, 8, 237.  https://doi.org/10.1186/1471-2407-8-237.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Jia, H., Wang, H., Yao, Y., Wang, C., & Li, P. (2018). MiR-136 inhibits malignant progression of hepatocellular carcinoma cells by targeting cyclooxygenase 2. Oncology Research, 26, 967–976.  https://doi.org/10.3727/096504018X15148192843443.Google Scholar
  19. 19.
    Teng, G., Dai, Y., Chu, Y., Li, J., Zhang, H., Wu, T., Shuai, X., & Wang, W. (2018). Helicobacter pylori induces caudal-type homeobox protein 2 and cyclooxygenase 2 expression by modulating microRNAs in esophageal epithelial cells. Cancer Science, 109(2), 297–307.  https://doi.org/10.1111/cas.13462.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Codocedo, J. F., & Inestrosa, N. C. (2016). Wnt-5a-regulated miR-101b controls COX2 expression in hippocampal neurons. Biological Research, 49, 9.  https://doi.org/10.1186/s40659-016-0071-x.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hu, E., Ding, L., Miao, H., Liu, F., Liu, D., Dou, H., et al. (2015). MiR-30a attenuates immunosuppressive functions of IL-1beta-elicited mesenchymal stem cells via targeting TAB3. FEBS Letters, 589(24 Pt B), 3899–3907.  https://doi.org/10.1016/j.febslet.2015.11.001.PubMedGoogle Scholar
  22. 22.
    Lai, Y., Zhang, X., Zhang, Z., Shu, Y., Luo, X., Yang, Y., et al. (2013). The microRNA-27a: ZBTB10-specificity protein pathway is involved in follicle stimulating hormone-induced VEGF, Cox2 and survivin expression in ovarian epithelial cancer cells. International Journal of Oncology, 42(2), 776–784.  https://doi.org/10.3892/ijo.2012.1743.PubMedGoogle Scholar
  23. 23.
    He, Q., Chen, Z., Dong, Q., Zhang, L., Chen, D., Patel, A., Koya, A., Luan, X., Cabay, R. J., Dai, Y., Wang, A., & Zhou, X. (2016). MicroRNA-21 regulates prostaglandin E2 signaling pathway by targeting 15-hydroxyprostaglandin dehydrogenase in tongue squamous cell carcinoma. BMC Cancer, 16(1), 685.  https://doi.org/10.1186/s12885-016-2716-0.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lai, Y. H., Liu, H., Chiang, W. F., Chen, T. W., Chu, L. J., Yu, J. S., Chen, S. J., Chen, H. C., & Tan, B. C. M. (2018). MiR-31-5p-ACOX1 axis enhances tumorigenic fitness in oral squamous cell carcinoma via the promigratory prostaglandin E2. Theranostics, 8(2), 486–504.  https://doi.org/10.7150/thno.22059.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Mehdawi, L. M., Satapathy, S. R., Gustafsson, A., Lundholm, K., Alvarado-Kristensson, M., & Sjolander, A. (2017). A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells. Oncotarget, 8(21), 35033–35047.  https://doi.org/10.18632/oncotarget.16591.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Akasaka, H., & Ruan, K. H. (2016). Identification of the two-phase mechanism of arachidonic acid regulating inflammatory prostaglandin E2 biosynthesis by targeting COX-2 and mPGES-1. Archives of Biochemistry and Biophysics, 603, 29–37.  https://doi.org/10.1016/j.abb.2016.04.011.PubMedGoogle Scholar
  27. 27.
    Zhao, J., Wen, S., Wang, X., & Zhang, Z. (2017). Helicobacter pylori modulates cyclooxygenase-2 and 15-hydroxy prostaglandin dehydrogenase in gastric cancer. Oncology Letters, 14(5), 5519–5525.  https://doi.org/10.3892/ol.2017.6843.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Asting, A. G., Iresjo, B. M., Nilsberth, C., Smedh, U., & Lundholm, K. (2017). Host knockout of E-prostanoid 2 receptors reduces tumor growth and causes major alterations of gene expression in prostaglandin E2-producing tumors. Oncology Letters, 13(1), 476–482.  https://doi.org/10.3892/ol.2016.5448.PubMedGoogle Scholar
  29. 29.
    Du, M., Shi, F., Zhang, H., Xia, S., Zhang, M., Ma, J., et al. (2015). Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of beta-catenin expression via EP3-4 receptor. Oncology Reports, 34(2), 715–726.  https://doi.org/10.3892/or.2015.4043.PubMedGoogle Scholar
  30. 30.
    Bazzani, L., Donnini, S., Finetti, F., Christofori, G., & Ziche, M. (2017). PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells. Oncotarget, 8(19), 31270–31287.  https://doi.org/10.18632/oncotarget.16116.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yip-Schneider, M. T., Carr, R. A., Wu, H., & Schmidt, C. M. (2017). Prostaglandin E2: a pancreatic fluid biomarker of intraductal papillary mucinous neoplasm dysplasia. Journal of the American College of Surgeons, 225(4), 481–487.  https://doi.org/10.1016/j.jamcollsurg.2017.07.521.PubMedGoogle Scholar
  32. 32.
    Kim, S., Campbell, J., Yoo, W., Taylor, J. A., & Sandler, D. P. (2017). Systemic levels of estrogens and PGE2 synthesis in relation to postmenopausal breast cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 26(3), 383–388.  https://doi.org/10.1158/1055-9965.EPI-16-0556.Google Scholar
  33. 33.
    Reid, G., Wielinga, P., Zelcer, N., van der Heijden, I., Kuil, A., de Haas, M., Wijnholds, J., & Borst, P. (2003). The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9244–9249.  https://doi.org/10.1073/pnas.1033060100.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kochel, T. J., & Fulton, A. M. (2015). Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE2 levels in cancer. Prostaglandins & Other Lipid Mediators, 116-117, 99–103.  https://doi.org/10.1016/j.prostaglandins.2014.11.003.Google Scholar
  35. 35.
    Kochel, T. J., Reader, J. C., Ma, X., Kundu, N., & Fulton, A. M. (2017). Multiple drug resistance-associated protein (MRP4) exports prostaglandin E2 (PGE2) and contributes to metastasis in basal/triple negative breast cancer. Oncotarget, 8(4), 6540–6554.  https://doi.org/10.18632/oncotarget.14145.PubMedGoogle Scholar
  36. 36.
    Kochel, T. J., Goloubeva, O. G., & Fulton, A. M. (2016). Upregulation of cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) pathway member multiple drug resistance-associated protein 4 (MRP4) and downregulation of prostaglandin transporter (PGT) and 15-prostaglandin dehydrogenase (15-PGDH) in triple-negative breast cancer. Breast Cancer (Auckl.), 10, 61–70.  https://doi.org/10.4137/BCBCR.S38529.Google Scholar
  37. 37.
    Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. The Journal of Biological Chemistry, 282(16), 11613–11617.  https://doi.org/10.1074/jbc.R600038200.PubMedGoogle Scholar
  38. 38.
    Madrigal-Martinez, A., Fernandez-Martinez, A. B., & Lucio Cazana, F. J. (2018). Intracrine prostaglandin E2 pro-tumoral actions in prostate epithelial cells originate from non-canonical pathways. Journal of Cellular Physiology, 233(4), 3590–3602.  https://doi.org/10.1002/jcp.26220.PubMedGoogle Scholar
  39. 39.
    Lian, S., Xia, Y., Ung, T. T., Khoi, P. N., Yoon, H. J., Lee, S. G., Kim, K. K., & Jung, Y. D. (2017). Prostaglandin E2 stimulates urokinase-type plasminogen activator receptor via EP2 receptor-dependent signaling pathways in human AGS gastric cancer cells. Molecular Carcinogenesis, 56(2), 664–680.  https://doi.org/10.1002/mc.22524.PubMedGoogle Scholar
  40. 40.
    Pan, J., Yang, Q., Shao, J., Zhang, L., Ma, J., Wang, Y., Jiang, B. H., Leng, J., & Bai, X. (2016). Cyclooxygenase-2 induced beta1-integrin expression in NSCLC and promoted cell invasion via the EP1/MAPK/E2F-1/FoxC2 signal pathway. Scientific Reports, 6, 33823.  https://doi.org/10.1038/srep33823.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Schmidt, A., Sinnett-Smith, J., Young, S., Chang, H. H., Hines, O. J., Dawson, D. W., Rozengurt, E., & Eibl, G. (2017). Direct growth-inhibitory effects of prostaglandin E2 in pancreatic cancer cells in vitro through an EP4/PKA-mediated mechanism. Surgery, 161(6), 1570–1578.  https://doi.org/10.1016/j.surg.2016.12.037.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fernandez-Martinez, A. B., & Lucio-Cazana, J. (2015). Intracellular EP2 prostanoid receptor promotes cancer-related phenotypes in PC3 cells. Cellular and Molecular Life Sciences, 72(17), 3355–3373.  https://doi.org/10.1007/s00018-015-1891-5.PubMedGoogle Scholar
  43. 43.
    Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M., & Gutkind, J. S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science, 310(5753), 1504–1510.  https://doi.org/10.1126/science.1116221.PubMedGoogle Scholar
  44. 44.
    Pai, R., Soreghan, B., Szabo, I. L., Pavelka, M., Baatar, D., & Tarnawski, A. S. (2002). Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Medicine, 8(3), 289–293.  https://doi.org/10.1038/nm0302-289.PubMedGoogle Scholar
  45. 45.
    Pai, R., Szabo, I. L., Soreghan, B. A., Atay, S., Kawanaka, H., & Tarnawski, A. S. (2001). PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochemical and Biophysical Research Communications, 286(5), 923–928.  https://doi.org/10.1006/bbrc.2001.5494.PubMedGoogle Scholar
  46. 46.
    Pang, L. Y., Hurst, E. A., & Argyle, D. J. (2016). Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells International, 2016, 2048731–2048711.  https://doi.org/10.1155/2016/2048731.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Paul, A. G., Chandran, B., & Sharma-Walia, N. (2013). Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi’s sarcoma-associated herpes virus associated malignancies. Translational Research, 162(2), 77–92.  https://doi.org/10.1016/j.trsl.2013.03.004.PubMedGoogle Scholar
  48. 48.
    Liao, J., Qian, F., Tchabo, N., Mhawech-Fauceglia, P., Beck, A., Qian, Z., Wang, X., Huss, W. J., Lele, S. B., Morrison, C. D., & Odunsi, K. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One, 9(1), e84941.  https://doi.org/10.1371/journal.pone.0084941.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., & Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.PubMedGoogle Scholar
  50. 50.
    Huang, Q., Li, F., Liu, X., Li, W., Shi, W., Liu, F. F., O'Sullivan, B., He, Z., Peng, Y., Tan, A. C., Zhou, L., Shen, J., Han, G., Wang, X. J., Thorburn, J., Thorburn, A., Jimeno, A., Raben, D., Bedford, J. S., & Li, C. Y. (2011). Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nature Medicine, 17(7), 860–866.  https://doi.org/10.1038/nm.2385.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Chimal-Ramirez, G. K., Espinoza-Sanchez, N. A., & Fuentes-Panana, E. M. (2015). A role for the inflammatory mediators cox-2 and metalloproteinases in cancer stemness. Anti-Cancer Agents in Medicinal Chemistry, 15(7), 837–855.PubMedGoogle Scholar
  52. 52.
    Kundu, N., Ma, X., Kochel, T., Goloubeva, O., Staats, P., Thompson, K., Martin, S., Reader, J., Take, Y., Collin, P., & Fulton, A. (2014). Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Research and Treatment, 143(1), 19–31.  https://doi.org/10.1007/s10549-013-2779-4.PubMedGoogle Scholar
  53. 53.
    Boodram, J. N., McGregor, I. J., Bruno, P. M., Cressey, P. B., Hemann, M. T., & Suntharalingam, K. (2016). Breast cancer stem cell potent copper(II)-non-steroidal anti-inflammatory drug complexes. Angewandte Chemie (International Ed. in English), 55(8), 2845–2850.  https://doi.org/10.1002/anie.201510443.Google Scholar
  54. 54.
    Wang, D., Fu, L., Sun, H., Guo, L., & DuBois, R. N. (2015). Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology, 149(7), 1884–1895 e1884.  https://doi.org/10.1053/j.gastro.2015.07.064.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Deng, Y., Su, Q., Mo, J., Fu, X., Zhang, Y., & Lin, E. H. (2013). Celecoxib downregulates CD133 expression through inhibition of the Wnt signaling pathway in colon cancer cells. Cancer Investigation, 31(2), 97–102.  https://doi.org/10.3109/07357907.2012.754458.PubMedGoogle Scholar
  56. 56.
    Guo, Z., Jiang, J. H., Zhang, J., Yang, H. J., Yang, F. Q., Qi, Y. P., Zhong, Y. P., Su, J., Yang, R. R., Li, L. Q., & Xiang, B. D. (2015). COX-2 promotes migration and invasion by the side population of cancer stem cell-like hepatocellular carcinoma cells. Medicine (Baltimore), 94(44), e1806.  https://doi.org/10.1097/MD.0000000000001806.Google Scholar
  57. 57.
    Pang, L. Y., Argyle, S. A., Kamida, A., Morrison, K. O., & Argyle, D. J. (2014). The long-acting COX-2 inhibitor mavacoxib (Trocoxil) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Veterinary Research, 10, 184.  https://doi.org/10.1186/s12917-014-0184-9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Tafani, M., Di Vito, M., Frati, A., Pellegrini, L., De Santis, E., Sette, G., et al. (2011). Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. Journal of Neuroinflammation, 8, 32.  https://doi.org/10.1186/1742-2094-8-32.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kurtova, A. V., Xiao, J., Mo, Q., Pazhanisamy, S., Krasnow, R., Lerner, S. P., Chen, F., Roh, T. T., Lay, E., Ho, P. L., & Chan, K. S. (2015). Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature, 517(7533), 209–213.  https://doi.org/10.1038/nature14034.PubMedGoogle Scholar
  60. 60.
    Hou, P. C., Li, Y. H., Lin, S. C., Lee, J. C., Lin, B. W., Liou, J. P., et al. (2017). Hypoxia-induced downregulation of DUSP-2 phosphatase drives colon cancer stemness. Cancer Research, 77(16), 4305–4316.  https://doi.org/10.1158/0008-5472.CAN-16-2990.PubMedGoogle Scholar
  61. 61.
    Fang, D., & Kitamura, H. (2018). Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: possible pathways and potential therapeutic approaches. International Journal of Urology, 25(1), 7–17.  https://doi.org/10.1111/iju.13404.PubMedGoogle Scholar
  62. 62.
    Wu, M., Guan, J., Li, C., Gunter, S., Nusrat, L., Ng, S., et al. (2017). Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget, 8(47), 82217–82230.  https://doi.org/10.18632/oncotarget.19283.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Liu, X., Ji, Q., Ye, N., Sui, H., Zhou, L., Zhu, H., Fan, Z., Cai, J., & Li, Q. (2015). Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLoS One, 10(5), e0123478.  https://doi.org/10.1371/journal.pone.0123478.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anatomica (Basel), 154(1), 8–20.Google Scholar
  65. 65.
    Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.  https://doi.org/10.1172/JCI39104.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMedGoogle Scholar
  67. 67.
    Mathenge, E. G., Dean, C. A., Clements, D., Vaghar-Kashani, A., Photopoulos, S., Coyle, K. M., Giacomantonio, M., Malueth, B., Nunokawa, A., Jordan, J., Lewis, J. D., Gujar, S. A., Marcato, P., Lee, P. W. K., & Giacomantonio, C. A. (2014). Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. Neoplasia, 16(11), 950–960.  https://doi.org/10.1016/j.neo.2014.09.004.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Aktipis, C. A., Kwan, V. S., Johnson, K. A., Neuberg, S. L., & Maley, C. C. (2011). Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS One, 6(11), e26100.  https://doi.org/10.1371/journal.pone.0026100.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Du, B., & Shim, J. S. (2016). Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 21(7).  https://doi.org/10.3390/molecules21070965.
  70. 70.
    Gonzalez, D. M., & Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7(344), re8.  https://doi.org/10.1126/scisignal.2005189.PubMedPubMedCentralGoogle Scholar
  71. 71.
    St John, M. A. (2015). Inflammatory mediators drive metastasis and drug resistance in head and neck squamous cell carcinoma. Laryngoscope, 125(Suppl 3), S1–S11.  https://doi.org/10.1002/lary.24998.PubMedGoogle Scholar
  72. 72.
    Bocca, C., Ievolella, M., Autelli, R., Motta, M., Mosso, L., Torchio, B., Bozzo, F., Cannito, S., Paternostro, C., Colombatto, S., Parola, M., & Miglietta, A. (2014). Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opinion on Therapeutic Targets, 18(2), 121–135.  https://doi.org/10.1517/14728222.2014.860447.PubMedGoogle Scholar
  73. 73.
    Fujii, R., Imanishi, Y., Shibata, K., Sakai, N., Sakamoto, K., Shigetomi, S., Habu, N., Otsuka, K., Sato, Y., Watanabe, Y., Ozawa, H., Tomita, T., Kameyama, K., Fujii, M., & Ogawa, K. (2014). Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 33, 40.  https://doi.org/10.1186/1756-9966-33-40.Google Scholar
  74. 74.
    Liu, X. J., Chen, Z. F., Li, H. L., Hu, Z. N., Liu, M., Tian, A. P., Zhao, D., Wu, J., Zhou, Y. N., & Qiao, L. (2013). Interaction between cyclooxygenase-2, Snail, and E-cadherin in gastric cancer cells. World Journal of Gastroenterology, 19(37), 6265–6271.  https://doi.org/10.3748/wjg.v19.i37.6265.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Bozzo, F., Bassignana, A., Lazzarato, L., Boschi, D., Gasco, A., Bocca, C., & Miglietta, A. (2009). Novel nitro-oxy derivatives of celecoxib for the regulation of colon cancer cell growth. Chemico-Biological Interactions, 182(2–3), 183–190.  https://doi.org/10.1016/j.cbi.2009.08.006.PubMedGoogle Scholar
  76. 76.
    Dinicola, S., Masiello, M. G., Proietti, S., Coluccia, P., Fabrizi, G., Catizone, A., Ricci, G., de Toma, G., Bizzarri, M., & Cucina, A. (2018). Nicotine increases colon cancer cell migration and invasion through epithelial to mesenchymal transition (EMT): COX-2 involvement. Journal of Cellular Physiology, 233(6), 4935–4948.  https://doi.org/10.1002/jcp.26323.PubMedGoogle Scholar
  77. 77.
    Jansen, S. R., Holman, R., Hedemann, I., Frankes, E., Elzinga, C. R., Timens, W., et al. (2015). Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survival via beta-catenin stabilization. Journal of Cellular and Molecular Medicine, 19(1), 210–226.  https://doi.org/10.1111/jcmm.12418.PubMedGoogle Scholar
  78. 78.
    Che, D., Zhang, S., Jing, Z., Shang, L., Jin, S., Liu, F., Shen, J., Li, Y., Hu, J., Meng, Q., & Yu, Y. (2017). Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE2/beta-catenin signalling pathway. Molecular Immunology, 90, 197–210.  https://doi.org/10.1016/j.molimm.2017.06.018.PubMedGoogle Scholar
  79. 79.
    Jansen, S. R., Poppinga, W. J., de Jager, W., Lezoualc'h, F., Cheng, X., Wieland, T., et al. (2016). Epac1 links prostaglandin E2 to beta-catenin-dependent transcription during epithelial-to-mesenchymal transition. Oncotarget, 7(29), 46354–46370.  https://doi.org/10.18632/oncotarget.10128.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Majumder, M., Dunn, L., Liu, L., Hasan, A., Vincent, K., Brackstone, M., Hess, D., & Lala, P. K. (2018). COX-2 induces oncogenic micro RNA miR655 in human breast cancer. Scientific Reports, 8(1), 327.  https://doi.org/10.1038/s41598-017-18612-3.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Li, P., Shan, J. X., Chen, X. H., Zhang, D., Su, L. P., Huang, X. Y., Yu, B. Q., Zhi, Q. M., Li, C. L., Wang, Y. Q., Tomei, S., Cai, Q., Ji, J., Li, J. F., Chouchane, L., Yu, Y. Y., Sun, F. Z., Xu, Z. H., Liu, B. Y., & Zhu, Z. G. (2015). Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Research, 25(5), 588–603.  https://doi.org/10.1038/cr.2015.51.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Deorukhkar, A., & Krishnan, S. (2010). Targeting inflammatory pathways for tumor radiosensitization. Biochemical Pharmacology, 80(12), 1904–1914.  https://doi.org/10.1016/j.bcp.2010.06.039.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Jimenez-Garduno, A. M., Mendoza-Rodriguez, M. G., Urrutia-Cabrera, D., Dominguez-Robles, M. C., Perez-Yepez, E. A., Ayala-Sumuano, J. T., et al. (2017). IL-1beta induced methylation of the estrogen receptor ERalpha gene correlates with EMT and chemoresistance in breast cancer cells. Biochemical and Biophysical Research Communications, 490(3), 780–785.  https://doi.org/10.1016/j.bbrc.2017.06.117.PubMedGoogle Scholar
  84. 84.
    Jung, K., Heishi, T., Khan, O. F., Kowalski, P. S., Incio, J., Rahbari, N. N., Chung, E., Clark, J. W., Willett, C. G., Luster, A. D., Yun, S. H., Langer, R., Anderson, D. G., Padera, T. P., Jain, R. K., & Fukumura, D. (2017). Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. The Journal of Clinical Investigation, 127(8), 3039–3051.  https://doi.org/10.1172/JCI93182.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Gonda, K., Shibata, M., Ohtake, T., Matsumoto, Y., Tachibana, K., Abe, N., Ohto, H., Sakurai, K., & Takenoshita, S. (2017). Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. Oncology Letters, 14(2), 1766–1774.  https://doi.org/10.3892/ol.2017.6305.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Liu, B., Qu, L., & Yan, S. (2015). Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell International, 15, 106.  https://doi.org/10.1186/s12935-015-0260-7.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Zelenay, S., van der Veen, A. G., Bottcher, J. P., Snelgrove, K. J., Rogers, N., Acton, S. E., et al. (2015). Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 162(6), 1257–1270.  https://doi.org/10.1016/j.cell.2015.08.015.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Bottcher, J. P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., et al. (2018). NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell, 172(5), 1022–1037 e1014.  https://doi.org/10.1016/j.cell.2018.01.004.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Roberts, E. W., Broz, M. L., Binnewies, M., Headley, M. B., Nelson, A. E., Wolf, D. M., Kaisho, T., Bogunovic, D., Bhardwaj, N., & Krummel, M. F. (2016). Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell, 30(2), 324–336.  https://doi.org/10.1016/j.ccell.2016.06.003.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Salmon, H., Idoyaga, J., Rahman, A., Leboeuf, M., Remark, R., Jordan, S., Casanova-Acebes, M., Khudoynazarova, M., Agudo, J., Tung, N., Chakarov, S., Rivera, C., Hogstad, B., Bosenberg, M., Hashimoto, D., Gnjatic, S., Bhardwaj, N., Palucka, A. K., Brown, B. D., Brody, J., Ginhoux, F., & Merad, M. (2016). Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 44(4), 924–938.  https://doi.org/10.1016/j.immuni.2016.03.012.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Spranger, S., Dai, D., Horton, B., & Gajewski, T. F. (2017). Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell, 31(5), 711–723 e714.  https://doi.org/10.1016/j.ccell.2017.04.003.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Broz, M. L., Binnewies, M., Boldajipour, B., Nelson, A. E., Pollack, J. L., Erle, D. J., Barczak, A., Rosenblum, M. D., Daud, A., Barber, D. L., Amigorena, S., van’t Veer, L. J., Sperling, A. I., Wolf, D. M., & Krummel, M. F. (2014). Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell, 26(6), 938.  https://doi.org/10.1016/j.ccell.2014.11.010.PubMedGoogle Scholar
  93. 93.
    Ruffell, B., Chang-Strachan, D., Chan, V., Rosenbusch, A., Ho, C. M., Pryer, N., et al. (2014). Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 26(5), 623–637.  https://doi.org/10.1016/j.ccell.2014.09.006.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67(9), 4507–4513.  https://doi.org/10.1158/0008-5472.CAN-06-4174.PubMedGoogle Scholar
  95. 95.
    Wang, M. T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Reviews, 26(3–4), 525–534.  https://doi.org/10.1007/s10555-007-9096-5.PubMedGoogle Scholar
  96. 96.
    Sreeramkumar, V., Fresno, M., & Cuesta, N. (2012). Prostaglandin E2 and T cells: friends or foes? Immunology and Cell Biology, 90(6), 579–586.  https://doi.org/10.1038/icb.2011.75.PubMedGoogle Scholar
  97. 97.
    Galvan, G. C., Johnson, C. B., Price, R. S., Liss, M. A., Jolly, C. A., & deGraffenried, L. A. (2017). Effects of obesity on the regulation of macrophage population in the prostate tumor microenvironment. Nutrition and Cancer, 69(7), 996–1002.  https://doi.org/10.1080/01635581.2017.1359320.PubMedGoogle Scholar
  98. 98.
    Prima, V., Kaliberova, L. N., Kaliberov, S., Curiel, D. T., & Kusmartsev, S. (2017). COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proceedings of the National Academy of Sciences of the United States of America, 114(5), 1117–1122.  https://doi.org/10.1073/pnas.1612920114.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Olesch, C., Sha, W., Angioni, C., Sha, L. K., Acaf, E., Patrignani, P., et al. (2015). MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget, 6(12), 10284–10296.  https://doi.org/10.18632/oncotarget.3581.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Furuya, H., Tamashiro, P. M., Shimizu, Y., Iino, K., Peres, R., Chen, R., Sun, Y., Hannun, Y. A., Obeid, L. M., & Kawamori, T. (2017). Sphingosine kinase 1 expression in peritoneal macrophages is required for colon carcinogenesis. Carcinogenesis, 38(12), 1218–1227.  https://doi.org/10.1093/carcin/bgx104.PubMedGoogle Scholar
  101. 101.
    Snijdewint, F. G., Kalinski, P., Wierenga, E. A., Bos, J. D., & Kapsenberg, M. L. (1993). Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. Journal of Immunology, 150(12), 5321–5329.Google Scholar
  102. 102.
    Huang, M., Stolina, M., Sharma, S., Mao, J. T., Zhu, L., Miller, P. W., Wollman, J., Herschman, H., & Dubinett, S. M. (1998). Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Research, 58(6), 1208–1216.PubMedGoogle Scholar
  103. 103.
    Wu, A. A., Drake, V., Huang, H. S., Chiu, S., & Zheng, L. (2015). Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology, 4(7), e1016700.  https://doi.org/10.1080/2162402X.2015.1016700.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Stolina, M., Sharma, S., Lin, Y., Dohadwala, M., Gardner, B., Luo, J., Zhu, L., Kronenberg, M., Miller, P. W., Portanova, J., Lee, J. C., & Dubinett, S. M. (2000). Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. Journal of Immunology, 164(1), 361–370.Google Scholar
  105. 105.
    Miao, J., Lu, X., Hu, Y., Piao, C., Wu, X., Liu, X., et al. (2017). Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget, 8(52), 89802–89810.  https://doi.org/10.18632/oncotarget.21155.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Krishnan, A. V., Moreno, J., Nonn, L., Swami, S., Peehl, D. M., & Feldman, D. (2007). Calcitriol as a chemopreventive and therapeutic agent in prostate cancer: role of anti-inflammatory activity. Journal of Bone and Mineral Research, 22(Suppl 2), V74–V80.  https://doi.org/10.1359/jbmr.07s213.PubMedGoogle Scholar
  107. 107.
    Hsu, H. H., Chen, M. C., Day, C. H., Lin, Y. M., Li, S. Y., Tu, C. C., Padma, V. V., Shih, H. N., Kuo, W. W., & Huang, C. Y. (2017). Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World Journal of Gastroenterology, 23(7), 1171–1179.  https://doi.org/10.3748/wjg.v23.i7.1171.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ghorab, M. M., El-Gaby, M. S. A., Alsaid, M. S., Elshaier, Y., Soliman, A. M., El-Senduny, F. F., et al. (2017). Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition. Anti-Cancer Agents in Medicinal Chemistry, 17(10), 1411–1425.  https://doi.org/10.2174/1871520617666170327153735.PubMedGoogle Scholar
  109. 109.
    Qin, G., Xu, F., Qin, T., Zheng, Q., Shi, D., Xia, W., et al. (2015). Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway. Oncotarget, 6(39), 41794–41808.  https://doi.org/10.18632/oncotarget.5993.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Pun, I. H., Chan, D., Chan, S. H., Chung, P. Y., Zhou, Y. Y., Law, S., et al. (2017). Anti-cancer effects of a novel quinoline derivative 83b1 on human esophageal squamous cell carcinoma through down-regulation of COX-2 mRNA and PGE2. Cancer Research and Treatment, 49(1), 219–229.  https://doi.org/10.4143/crt.2016.190.PubMedGoogle Scholar
  111. 111.
    Verma, A., Ahmed, B., Anwar, F., Rahman, M., Patel, D. K., Kaithwas, G., Rani, R., Bhatt, P. C., & Kumar, V. (2017). Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-kappaB pathway. Inflammopharmacology, 25(1), 159–175.  https://doi.org/10.1007/s10787-017-0310-y.PubMedGoogle Scholar
  112. 112.
    Lin, Y. M., Kuo, W. W., Velmurugan, B. K., Hsien, H. H., Hsieh, Y. L., Hsu, H. H., Tu, C. C., Bau, D. T., Viswanadha, V. P., & Huang, C. Y. (2016). Helioxanthin suppresses the cross talk of COX-2/PGE2 and EGFR/ERK pathway to inhibit arecoline-induced oral cancer cell (T28) proliferation and blocks tumor growth in xenografted nude mice. Environmental Toxicology, 31(12), 2045–2056.  https://doi.org/10.1002/tox.22204.PubMedGoogle Scholar
  113. 113.
    Seira, N., Yanagisawa, N., Suganami, A., Honda, T., Wasai, M., Regan, J. W., Fukushima, K., Yamaguchi, N., Tamura, Y., Arai, T., Murayama, T., & Fujino, H. (2017). Anti-cancer effects of MW-03, a novel indole compound, by inducing 15-hydroxyprostaglandin dehydrogenase and cellular growth inhibition in the LS174T human colon cancer cell line. Biological & Pharmaceutical Bulletin, 40(10), 1806–1812.  https://doi.org/10.1248/bpb.b17-00458.Google Scholar
  114. 114.
    Choi, S. H., Kim, B. G., Robinson, J., Fink, S., Yan, M., Sporn, M. B., Markowitz, S. D., & Letterio, J. J. (2014). Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis. The Journal of Clinical Investigation, 124(6), 2472–2482.  https://doi.org/10.1172/JCI69672.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Kangwan, N., Kim, Y. J., Han, Y. M., Jeong, M., Park, J. M., Go, E. J., et al. (2016). Sonic Hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition. Oncotarget, 7(7), 7667–7682.  https://doi.org/10.18632/oncotarget.6765.PubMedGoogle Scholar
  116. 116.
    Tai, H. H., Chi, X., & Tong, M. (2011). Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins & Other Lipid Mediators, 96(1–4), 37–40.  https://doi.org/10.1016/j.prostaglandins.2011.06.005.Google Scholar
  117. 117.
    Chi, X., Freeman, B. M., Tong, M., Zhao, Y., & Tai, H. H. (2009). 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is up-regulated by flurbiprofen and other non-steroidal anti-inflammatory drugs in human colon cancer HT29 cells. Archives of Biochemistry and Biophysics, 487(2), 139–145.  https://doi.org/10.1016/j.abb.2009.05.017.PubMedGoogle Scholar
  118. 118.
    Chi, X., & Tai, H. H. (2010). Interleukin-4 up-regulates 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in human lung cancer cells. Experimental Cell Research, 316(14), 2251–2259.PubMedGoogle Scholar
  119. 119.
    Xun, C. Q., Tian, Z. G., & Tai, H. H. (1991). Stimulation of synthesis de novo of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human promyelocytic leukaemia (HL-60) cells by phorbol ester. The Biochemical Journal, 279(Pt 2), 553–558.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Kitamura, T., Itoh, M., Noda, T., Tani, K., Kobayashi, M., Maruyama, T., Kobayashi, K., Ohuchida, S., Sugimura, T., & Wakabayashi, K. (2003). Combined effects of prostaglandin E receptor subtype EP1 and subtype EP4 antagonists on intestinal tumorigenesis in adenomatous polyposis coli gene knockout mice. Cancer Science, 94(7), 618–621.PubMedGoogle Scholar
  121. 121.
    Kitamura, T., Itoh, M., Noda, T., Matsuura, M., & Wakabayashi, K. (2004). Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on intestinal tumorigenesis in adenomatous polyposis coli gene knockout mice. International Journal of Cancer, 109(4), 576–580.  https://doi.org/10.1002/ijc.20012.PubMedGoogle Scholar
  122. 122.
    Niho, N., Mutoh, M., Kitamura, T., Takahashi, M., Sato, H., Yamamoto, H., Maruyama, T., Ohuchida, S., Sugimura, T., & Wakabayashi, K. (2005). Suppression of azoxymethane-induced colon cancer development in rats by a prostaglandin E receptor EP1-selective antagonist. Cancer Science, 96(5), 260–264.  https://doi.org/10.1111/j.1349-7006.2005.00047.x.PubMedGoogle Scholar
  123. 123.
    Jin, J., Chang, Y., Wei, W., He, Y. F., Hu, S. S., Wang, D., & Wu, Y. J. (2012). Prostanoid EP1 receptor as the target of (−)-epigallocatechin-3-gallate in suppressing hepatocellular carcinoma cells in vitro. Acta Pharmacologica Sinica, 33(5), 701–709.  https://doi.org/10.1038/aps.2012.13.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Cheuk, I. W., Shin, V. Y., Siu, M. T., Tsang, J. Y., Ho, J. C., Chen, J., Tse, G. M., Wang, X., & Kwong, A. (2015). Association of EP2 receptor and SLC19A3 in regulating breast cancer metastasis. American Journal of Cancer Research, 5(11), 3389–3399.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Ikawa, Y., Fujino, H., Otake, S., & Murayama, T. (2012). Indomethacin antagonizes EP(2) prostanoid receptor activation in LS174T human colon cancer cells. European Journal of Pharmacology, 680(1–3), 16–21.  https://doi.org/10.1016/j.ejphar.2012.01.033.PubMedGoogle Scholar
  126. 126.
    Holt, D. M., Ma, X., Kundu, N., Collin, P. D., & Fulton, A. M. (2012). Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4. Journal of Immunotherapy, 35(2), 179–188.  https://doi.org/10.1097/CJI.0b013e318247a5e9.PubMedGoogle Scholar
  127. 127.
    Li, C., Liu, X., Liu, Y., Zhang, E., Medepalli, K., Masuda, K., Li, N., Wikenheiser-Brokamp, K. A., Osterburg, A., Borchers, M. T., Kopras, E. J., Plas, D. R., Sun, J., Franz, D. N., Capal, J. K., Mays, M., Sun, Y., Kwiatkowski, D. J., Alayev, A., Holz, M. K., Krueger, D. A., Siroky, B. J., & Yu, J. J. (2017). Tuberin regulates prostaglandin receptor-mediated viability, via Rheb, in mTORC1-hyperactive cells. Molecular Cancer Research, 15(10), 1318–1330.  https://doi.org/10.1158/1541-7786.MCR-17-0077.PubMedGoogle Scholar
  128. 128.
    Fang, T., Hou, J., He, M., Wang, L., Zheng, M., Wang, X., & Xia, J. (2016). Actinidia chinensis planch root extract (acRoots) inhibits hepatocellular carcinoma progression by inhibiting EP3 expression. Cell Biology and Toxicology, 32(6), 499–511.  https://doi.org/10.1007/s10565-016-9351-z.PubMedGoogle Scholar
  129. 129.
    Zhu, J., Trillsch, F., Mayr, D., Kuhn, C., Rahmeh, M., Hofmann, S., et al. (2018). Prostaglandin receptor EP3 regulates cell proliferation and migration with impact on survival of endometrial cancer patients. Oncotarget, 9(1), 982–994.  https://doi.org/10.18632/oncotarget.23140.PubMedGoogle Scholar
  130. 130.
    Hoshikawa, H., Goto, R., Mori, T., Mitani, T., & Mori, N. (2009). Expression of prostaglandin E2 receptors in oral squamous cell carcinomas and growth inhibitory effects of an EP3 selective antagonist, ONO-AE3-240. International Journal of Oncology, 34(3), 847–852.PubMedGoogle Scholar
  131. 131.
    Ma, X., Holt, D., Kundu, N., Reader, J., Goloubeva, O., Take, Y., & Fulton, A. M. (2013). A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology, 2(1), e22647.  https://doi.org/10.4161/onci.22647.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Robertson, F. M., Simeone, A. M., Mazumdar, A., Shah, A. H., McMurray, J. S., Ghosh, S., et al. (2008). Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. Journal of Experimental Therapeutics & Oncology, 7(4), 299–312.Google Scholar
  133. 133.
    Majumder, M., Xin, X., Liu, L., Girish, G. V., & Lala, P. K. (2014). Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Science, 105(9), 1142–1151.  https://doi.org/10.1111/cas.12475.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Parida, S., Parekh, A., Dey, G., Ghosh, S. C., & Mandal, M. (2015). Molecular inhibition of prostaglandin E2 with GW627368X: therapeutic potential and preclinical safety assessment in mouse sarcoma model. Cancer Biology & Therapy, 16(6), 922–932.  https://doi.org/10.1080/15384047.2015.1040953.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dali Tong
    • 1
  • Qiuli Liu
    • 1
  • Lin-ang Wang
    • 1
  • Qiubo Xie
    • 1
  • Jian Pang
    • 1
  • Yiqiang Huang
    • 1
  • Luofu Wang
    • 1
  • Gaolei Liu
    • 1
  • Dianzheng Zhang
    • 2
  • Weihua Lan
    • 1
  • Jun Jiang
    • 1
  1. 1.Department of Urology, Institute of Surgery Research, Daping HospitalThird Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Bio-Medical SciencesPhiladelphia College of Osteopathic MedicinePhiladelphiaUSA

Personalised recommendations