Cancer and Metastasis Reviews

, Volume 37, Issue 2–3, pp 335–345 | Cite as

Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma

  • K. Slater
  • P. S. Hoo
  • A. M. Buckley
  • J. M. Piulats
  • A. Villanueva
  • A. Portela
  • B. N. KennedyEmail author


Uveal melanoma is a rare, but deadly, form of eye cancer that arises from melanocytes within the uveal tract. Although advances have emerged in treatment of the primary tumour, patients are still faced with vision loss, eye enucleation and lethal metastatic spread of the disease. Approximately 50% of uveal melanoma patients develop metastases, which occur most frequently in the liver. Metastatic patients encounter an extremely poor prognosis; as few as 8% survive beyond 2 years. Understanding of the genetic underpinnings of this fatal disease evolved in recent years with the identification of new oncogenic mutations that drive uveal melanoma pathogenesis. Despite this progress, the lack of successful therapies or a proven standard-of-care for uveal melanoma highlights the need for new targeted therapies. This review focuses on the recently identified CYSLTR2 oncogenic mutation in uveal melanoma. Here, we evaluate the current status of uveal melanoma and investigate how to better understand the role of this CYSLTR2 mutation in the disease and implications for patients harbouring this mutation.


Uveal melanoma Cysteinyl leukotriene receptor 2 Cysteinyl leukotriene signalling Patient-derived xenograft models 



We wish to thank Noel Horgan, Jens Rauch and Sean Ennis for discussions and comments on the manuscript.

Author contributions

KS was the primary author of the review. PSH and AMB contributed intellectual input. JMP, AV and AP were responsible for PDOX model development and drafted a section for the review. BNK contributed significant intellectual input, revised and edited the review. All authors reviewed the final manuscript.


Research related to some of the topics discussed in this review is funded by an Irish Research Council Employment Based Postgraduate Scholarship (EBP/2017/473). This project area has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 734907 (RISE/3D-NEONET project).

Compliance with ethical standards

Conflict of interest

KS is an employee of Genomics Medicine Ireland. AV is the chief scientific officer and co-founder of Xenopat S.L. AP is the chief executive officer and co-founder of Xenopat S.L.

The other authors declare no competing financial interests that could be construed as a potential conflict of interest.


  1. 1.
    Chang, A. E., Karnell, L. H., & Menck, H. R. (1998). The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer, 83(8), 1664–1678.CrossRefPubMedGoogle Scholar
  2. 2.
    Virgili, G., Gatta, G., Ciccolallo, L., Capocaccia, R., Biggeri, A., Crocetti, E., Lutz, J. M., Paci, E., & EUROCARE Working Group. (2007). Incidence of uveal melanoma in Europe. Ophthalmology, 114(12), 2309–2315.CrossRefPubMedGoogle Scholar
  3. 3.
    Krantz, B. A., Dave, N., Komatsubara, K. M., Marr, B. P., Carvajal, R. D. (2017). Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol, 279–89.Google Scholar
  4. 4.
    Jovanovic, P., Mihajlovic, M., Djordjevic-Jocic, J., Vlajkovic, S., Cekic, S., & Stefanovic, V. (2013). Ocular melanoma: an overview of the current status. International Journal of Clinical and Experimental Pathology, 6(7), 1230–1244.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Registry, N. C. (2017). Cancer in Ireland 1994–2015 with estimates for 2015–2017: Annual Report of the National Cancer Registry. NCR, Cork, Ireland.Google Scholar
  6. 6.
    Singh, A. D., Turell, M. E., & Topham, A. K. (2011). Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology, 118(9), 1881–1885.CrossRefPubMedGoogle Scholar
  7. 7.
    Keenan, T. D., Yeates, D., & Goldacre, M. J. (2012). Uveal melanoma in England: trends over time and geographical variation. The British Journal of Ophthalmology, 96(11), 1415–1419.CrossRefPubMedGoogle Scholar
  8. 8.
    Damato, E. M., & Damato, B. E. (2012). Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2,384 patients. Ophthalmology, 119(8), 1582–1589.CrossRefPubMedGoogle Scholar
  9. 9.
    Robertson, A. G., Shih, J., Yau, C., Gibb, E. A., Oba, J., Mungall, K. L., et al. (2017). Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell, 32(2), 204–20.e15.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shah, C. P., Weis, E., Lajous, M., Shields, J. A., & Shields, C. L. (2005). Intermittent and chronic ultraviolet light exposure and uveal melanoma: a meta-analysis. Ophthalmology, 112(9), 1599–1607.CrossRefPubMedGoogle Scholar
  11. 11.
    Ali, Z., Yousaf, N., & Larkin, J. (2013). Melanoma epidemiology, biology and prognosis. EJC Supplements, 11(2), 81–91.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pandiani, C., Beranger, G. E., Leclerc, J., Ballotti, R., & Bertolotto, C. (2017). Focus on cutaneous and uveal melanoma specificities. Genes & Development, 31(8), 724–743.CrossRefGoogle Scholar
  13. 13.
    Yang, J., Manson, D. K., Marr, B. P., & Carvajal, R. D. (2018). Treatment of uveal melanoma: Where are we now? Therapeutic Advances In Medical Oncology, 10, 1758834018757175.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Pham, C. M., Custer, P. L., & Couch, S. M. (2017). Comparison of primary and secondary enucleation for uveal melanoma. Orbit, 36(6), 422–427.CrossRefPubMedGoogle Scholar
  15. 15.
    Diener-West, M., Earle, J. D., Fine, S. L., Hawkins, B. S., Moy, C. S., Reynolds, S. M., Schachat, A. P., Straatsma, B. R., & Collaborative Ocular Melanoma Study Group. (2001). The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. COMS report no. 18. Archives of Ophthalmology, 119(7), 969–982.CrossRefPubMedGoogle Scholar
  16. 16.
    Naseripour, M., Jaberi, R., Sedaghat, A., Azma, Z., Nojomi, M., Falavarjani, K. G., & Nazari, H. (2016). Ruthenium-106 brachytherapy for thick uveal melanoma: reappraisal of apex and base dose radiation and dose rate. Journal of Contemporary Brachytherapy, 1, 66–73.CrossRefGoogle Scholar
  17. 17.
    Zaldivar, R. A., Aaberg, T. M., Sternberg Jr., P., Waldron, R., & Grossniklaus, H. E. (2003). Clinicopathologic findings in choroidal melanomas after failed transpupillary thermotherapy. American Journal of Ophthalmology, 135(5), 657–663.CrossRefPubMedGoogle Scholar
  18. 18.
    Singh, A. D., Rundle, P. A., Berry-Brincat, A., Parsons, M. A., Rennie, I. G. (2004). Extrascleral extension of choroidal malignant melanoma following transpupillary thermotherapy. Eye (London, England), 91–3.Google Scholar
  19. 19.
    Damato, B. (2010). Does ocular treatment of uveal melanoma influence survival? British Journal of Cancer, 103(3), 285–290.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Diener-West, M., Reynolds, S. M., Agugliaro, D. J., Caldwell, R., Cumming, K., Earle, J. D., Hawkins, B. S., Hayman, J. A., Jaiyesimi, I., Jampol, L. M., Kirkwood, J. M., Koh, W. J., Robertson, D. M., Shaw, J. M., Straatsma, B. R., Thoma, J., & Collaborative Ocular Melanoma Study Group. (2005). Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: collaborative ocular melanoma study group report no. 26. Archives of Ophthalmology, 123(12), 1639–1643.CrossRefPubMedGoogle Scholar
  21. 21.
    Kuk, D., Shoushtari, A. N., Barker, C. A., Panageas, K. S., Munhoz, R. R., Momtaz, P., Ariyan, C. E., Brady, M. S., Coit, D. G., Bogatch, K., Callahan, M. K., Wolchok, J. D., Carvajal, R. D., & Postow, M. A. (2016). Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. The Oncologist, 21(7), 848–854.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carvajal, R. D., Sosman, J. A., Quevedo, J. F., Milhem, M. M., Joshua, A. M., Kudchadkar, R. R., Linette, G. P., Gajewski, T. F., Lutzky, J., Lawson, D. H., Lao, C. D., Flynn, P. J., Albertini, M. R., Sato, T., Lewis, K., Doyle, A., Ancell, K., Panageas, K. S., Bluth, M., Hedvat, C., Erinjeri, J., Ambrosini, G., Marr, B., Abramson, D. H., Dickson, M. A., Wolchok, J. D., Chapman, P. B., & Schwartz, G. K. (2014). Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. Journal of the American Medical Association, 311(23), 2397–2405.CrossRefPubMedGoogle Scholar
  23. 23.
    McArthur, G. A., Chapman, P. B., Robert, C., Larkin, J., Haanen, J. B., Dummer, R., et al. (2014). Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology, 15(3), 323–332.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Field, M. G., & Harbour, J. W. (2014). GNAQ/11 mutations in uveal melanoma: is YAP the key to targeted therapy? Cancer Cell, 25(6), 714–715.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Carvajal, R. D., Piperno-Neumann, S., Kapiteijn, E., Chapman, P. B., Frank, S., Joshua, A. M., Piulats, J. M., Wolter, P., Cocquyt, V., Chmielowski, B., Evans, T. R. J., Gastaud, L., Linette, G., Berking, C., Schachter, J., Rodrigues, M. J., Shoushtari, A. N., Clemett, D., Ghiorghiu, D., Mariani, G., Spratt, S., Lovick, S., Barker, P., Kilgour, E., Lai, Z., Schwartz, G. K., & Nathan, P. (2018). Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a phase III, multicenter, randomized trial (SUMIT). Journal of Clinical Oncology, 36(12), 1232–1239.CrossRefPubMedGoogle Scholar
  26. 26.
    Helgadottir, H., Höiom, V. (2016). The genetics of uveal melanoma: current insights. Appl Clin Genet, 147–55.Google Scholar
  27. 27.
    Onken, M. D., Worley, L. A., Tuscan, M. D., & Harbour, J. W. (2010). An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. The Journal of Molecular Diagnostics, 12(4), 461–468.CrossRefPubMedGoogle Scholar
  28. 28.
    Harbour, J. W. (2014). A prognostic test to predict the risk of metastasis in uveal melanoma based on a 15-gene expression profile. Methods in Molecular Biology, 1102, 427–440.CrossRefPubMedGoogle Scholar
  29. 29.
    Field, M. G., & Harbour, J. W. (2014). Recent developments in prognostic and predictive testing in uveal melanoma. Current Opinion in Ophthalmology, 25(3), 234–239.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    White, V. A., Chambers, J. D., Courtright, P. D., Chang, W. Y., & Horsman, D. E. (1998). Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer, 83(2), 354–359.CrossRefPubMedGoogle Scholar
  31. 31.
    Kilic, E., van Gils, W., Lodder, E., Beverloo, H. B., van Til, M. E., Mooy, C. M., Paridaens, D., de Klein, A., & Luyten, G. P. M. (2006). Clinical and cytogenetic analyses in uveal melanoma. Investigative Ophthalmology & Visual Science, 47(9), 3703–3707.CrossRefGoogle Scholar
  32. 32.
    Staby, K. M., Gravdal, K., Mork, S. J., Heegaard, S., Vintermyr, O. K., & Krohn, J. (2018). Prognostic impact of chromosomal aberrations and GNAQ, GNA11 and BAP1 mutations in uveal melanoma. Acta Ophthalmologica, 96(1), 31–38.CrossRefPubMedGoogle Scholar
  33. 33.
    Kaliki, S., Shields. C. L., Shields, J. A. (2015). Uveal melanoma: estimating prognosis. Indian Journal of Ophthalmology, 93–102.Google Scholar
  34. 34.
    Shoushtari, A. N., & Carvajal, R. D. (2014). GNAQ and GNA11 mutations in uveal melanoma. Melanoma Research, 24(6), 525–534.CrossRefPubMedGoogle Scholar
  35. 35.
    Van Raamsdonk, C. D., Griewank, K. G., Crosby, M. B., Garrido, M. C., Vemula, S., Wiesner, T., et al. (2010). Mutations in GNA11 in uveal melanoma. New England Journal of Medicine, 363(23), 2191–2199.CrossRefPubMedGoogle Scholar
  36. 36.
    Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O'Brien, J. M., et al. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 457(7229), 599–602.CrossRefPubMedGoogle Scholar
  37. 37.
    Johansson, P., Aoude, L. G., Wadt, K., Glasson, W. J., Warrier, S. K., Hewitt, A. W., Kiilgaard, J. F., Heegaard, S., Isaacs, T., Franchina, M., Ingvar, C., Vermeulen, T., Whitehead, K. J., Schmidt, C. W., Palmer, J. M., Symmons, J., Gerdes, A. M., Jönsson, G., & Hayward, N. K. (2016). Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget, 7(4), 4624–4631.CrossRefPubMedGoogle Scholar
  38. 38.
    Harbour, J. W., Roberson, E. D., Anbunathan, H., Onken, M. D., Worley, L. A., & Bowcock, A. M. (2013). Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nature Genetics, 45(2), 133–135.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Martin, M., Masshofer, L., Temming, P., Rahmann, S., Metz, C., Bornfeld, N., et al. (2013). Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genetics, 45(8), 933–936.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Harbour, J. W., Onken, M. D., Roberson, E. D., Duan, S., Cao, L., Worley, L. A., et al. (2010). Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 330(6009), 1410–1413.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moore, A. R., Ceraudo, E., Sher, J. J., Guan, Y., Shoushtari, A. N., Chang, M. T., Zhang, J. Q., Walczak, E. G., Kazmi, M. A., Taylor, B. S., Huber, T., Chi, P., Sakmar, T. P., & Chen, Y. (2016). Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nature Genetics, 48(6), 675–680.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Robson, M., Im, S.-A., Senkus, E., Xu, B., Domchek, S. M., Masuda, N., Delaloge, S., Li, W., Tung, N., Armstrong, A., Wu, W., Goessl, C., Runswick, S., & Conte, P. (2017). Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. New England Journal of Medicine, 377(6), 523–533.CrossRefPubMedGoogle Scholar
  43. 43.
    Bisgaard, H. (2001). Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma. Allergy, 56(Suppl 66), 7–11.CrossRefPubMedGoogle Scholar
  44. 44.
    D'Urzo, A. D., & Chapman, K. R. (2000). Leukotriene-receptor antagonists. Role in asthma management. Canadian Family Physician, 46, 872–879.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Kanaoka, Y., & Boyce, J. A. (2004). Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. Journal of Immunology, 173, 1503–1510.CrossRefGoogle Scholar
  46. 46.
    Kanaoka, Y., Maekawa, A., & Austen, K. F. (2013). Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. The Journal of Biological Chemistry, 288(16), 10967–10972.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Savari, S., Vinnakota, K., Zhang, Y., Sjölander, A. (2014). Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World Journal of Gastroenterology, 968–77.Google Scholar
  48. 48.
    Laidlaw, T. M., Boyce, J. A. (2012). Cysteinyl leukotriene receptors, old and new; implications for asthma. Clinical and Experimental Allergy, 1313–20.Google Scholar
  49. 49.
    Lynch, K. R., O’Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., et al. (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature, 789–93.Google Scholar
  50. 50.
    Heise, C. E., O'Dowd, B. F., Figueroa, D. J., Sawyer, N., Nguyen, T., Im, D. S., Stocco, R., Bellefeuille, J. N., Abramovitz, M., Cheng, R., Williams Jr., D. L., Zeng, Z., Liu, Q., Ma, L., Clements, M. K., Coulombe, N., Liu, Y., Austin, C. P., George, S. R., O'Neill, G. P., Metters, K. M., Lynch, K. R., & Evans, J. F. (2000). Characterization of the human cysteinyl leukotriene 2 receptor. The Journal of Biological Chemistry, 275(39), 30531–30536.CrossRefPubMedGoogle Scholar
  51. 51.
    Jans, D. A., Xiao, C. Y., & Lam, M. H. (2000). Nuclear targeting signal recognition: a key control point in nuclear transport? BioEssays, 22(6), 532–544.CrossRefPubMedGoogle Scholar
  52. 52.
    Servant, M. J., Tenoever, B., & Lin, R. (2002). Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. Journal of Interferon & Cytokine Research, 22(1), 49–58.CrossRefGoogle Scholar
  53. 53.
    Ciana P, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. The EMBO Journal 2006. p. 4615–4627, 25.Google Scholar
  54. 54.
    Lee, K. S. (2004). Cysteinyl leukotriene receptor antagonist regulates vascular permeability by reducing vascular endothelial growth factor expression. The journal of allergy and clinical immunology, 1093–99.Google Scholar
  55. 55.
    Marom, Z., Shelhamer, J. H., Bach, M. K., Morton, D. R., & Kaliner, M. (1982). Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. The American Review of Respiratory Disease, 126(3), 449–451.PubMedGoogle Scholar
  56. 56.
    Drazen, J. M., Austen, K. F., Lewis, R. A., Clark, D. A., Goto, G., Marfat, A., & Corey, E. J. (1980). Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 4354–4358.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Burke, L., Butler, C. T., Murphy, A., Moran, B., Gallagher, W. M., O'Sullivan, J., & Kennedy, B. N. (2016). Evaluation of cysteinyl leukotriene signaling as a therapeutic target for colorectal Cancer. Frontiers in Cell and Development Biology, 4.Google Scholar
  58. 58.
    Funao, K., Matsuyama, M., Naganuma, T., Kawahito, Y., Sano, H., Nakatani, T., & Yoshimura, R. (2008). The cysteinylLT1 receptor in human renal cell carcinoma. Molecular Medicine Reports, 1(2), 185–189.PubMedGoogle Scholar
  59. 59.
    Matsuyama, M., Funao, K., Hayama, T., Tanaka, T., Kawahito, Y., Sano, H., Takemoto, Y., Nakatani, T., & Yoshimura, R. (2009). Relationship between cysteinyl-leukotriene-1 receptor and human transitional cell carcinoma in bladder. Urology, 73(4), 916–921.CrossRefPubMedGoogle Scholar
  60. 60.
    Matsuyama, M., Funao, K., Kawahito, Y., Sano, H., Chargui, J., Touraine, J. L., Nakatani, T., & Yoshimura, R. (2009). Expression of cysteinylLT1 receptor in human testicular cancer and growth reduction by its antagonist through apoptosis. Molecular Medicine Reports, 2(2), 163–167.PubMedGoogle Scholar
  61. 61.
    Nielsen, C. K., Ohd, J. F., Wikstrom, K., Massoumi, R., Paruchuri, S., Juhas, M., et al. (2003). The leukotriene receptor CysLT1 and 5-lipoxygenase are upregulated in colon cancer. Advances in Experimental Medicine and Biology, 525, 201–204.CrossRefPubMedGoogle Scholar
  62. 62.
    Tsai, M. J., Wu, P. H., Sheu, C. C., Hsu, Y. L., Chang, W. A., Hung, J. Y., et al. (2016). Cysteinyl leukotriene receptor antagonists decrease Cancer risk in asthma patients. Scientific Reports, 6.Google Scholar
  63. 63.
    Moller, I., Murali, R., Muller, H., Wiesner, T., Jackett, L. A., Scholz, S. L., et al. (2017). Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi. Modern Pathology, 30(3), 350–356.CrossRefPubMedGoogle Scholar
  64. 64.
    Magnusson, C., Mezhybovska, M., Lorinc, E., Fernebro, E., Nilbert, M., & Sjolander, A. (2010). Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer. European Journal of Cancer, 46(4), 826–835.CrossRefPubMedGoogle Scholar
  65. 65.
    Magnusson, C., Liu, J., Ehrnstrom, R., Manjer, J., Jirstrom, K., Andersson, T., et al. (2011). Cysteinyl leukotriene receptor expression pattern affects migration of breast cancer cells and survival of breast cancer patients. International Journal of Cancer, 129(1), 9–22.CrossRefPubMedGoogle Scholar
  66. 66.
    Magnusson, C., Bengtsson, A. M., Liu, M., Liu, J., Ceder, Y., Ehrnstrom, R., et al. (2011). Regulation of cysteinyl leukotriene receptor 2 expression–a potential anti-tumor mechanism. PLoS One, 6(12), e29060.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mehdawi, L. M., Satapathy, S. R., Gustafsson, A., Lundholm, K., Alvarado-Kristensson, M., & Sjolander, A. (2017). A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells. Oncotarget, 8(21), 35033–35047.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Maiga, A., Lemieux, S., Pabst, C., Lavallee, V. P., Bouvier, M., Sauvageau, G., et al. (2016). Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets. Blood Cancer Journal, 6(6), e431.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jiang, Y., Borrelli, L. A., Kanaoka, Y., Bacskai, B. J., & Boyce, J. A. (2007). CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene–dependent mitogenic responses of mast cells. Blood, 110(9), 3263–3270.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kanaoka, Y., & Boyce, J. A. (2014). Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy, Asthma & Immunology Research, 6(4), 288–295.CrossRefGoogle Scholar
  71. 71.
    Bennett, D. C., Cooper, P. J., & Hart, I. R. (1987). A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. International Journal of Cancer, 39(3), 414–418.CrossRefPubMedGoogle Scholar
  72. 72.
    Griewank, K. G., Yu, X., Khalili, J., Sozen, M. M., Stempke-Hale, K., Bernatchez, C., Wardell, S., Bastian, B. C., & Woodman, S. E. (2012). Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell & Melanoma Research, 25(2), 182–187.CrossRefGoogle Scholar
  73. 73.
    Chen, X., Wu, Q., Tan, L., Porter, D., Jager, M. J., Emery, C., & Bastian, B. C. (2014). Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene, 33(39), 4724–4734.CrossRefPubMedGoogle Scholar
  74. 74.
    Reynolds, A. L. (2016). Phenotype based discovery of 2-[(E)-2-(QUINOLIN-2-YL)VINYL]PHENOL as a novel regulator of ocular angiogenesis. The Journal of Biological Chemistry.Google Scholar
  75. 75.
    Butler, C. T., Reynolds, A. L., Tosetto, M., Dillon, E. T., Guiry, P. J., Cagney, G., O'Sullivan, J., & Kennedy, B. N. (2017). A quininib analogue and cysteinyl leukotriene receptor antagonist inhibits vascular endothelial growth factor (VEGF)-independent angiogenesis and exerts an additive antiangiogenic response with bevacizumab. The Journal of Biological Chemistry, 292(9), 3552–3567.CrossRefPubMedGoogle Scholar
  76. 76.
    Loukopoulos, P., Kanetaka, K., Takamura, M., Shibata, T., Sakamoto, M., & Hirohashi, S. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas, 29(3), 193–203.CrossRefPubMedGoogle Scholar
  77. 77.
    DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhao, X., Liu, Z., Yu, L., Zhang, Y., Baxter, P., Voicu, H., Gurusiddappa, S., Luan, J., Su, J. M., Leung, H. C. E., & Li, X. N. (2012). Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncology, 14(5), 574–583.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Carita, G., Némati, F., & Decaudin, D. (2015). Uveal melanoma patient-derived xenografts. Ocular Oncology and Pathology, 1(3), 161–169.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Nemati, F., Sastre-Garau, X., Laurent, C., Couturier, J., Mariani, P., Desjardins, L., Piperno-Neumann, S., Lantz, O., Asselain, B., Plancher, C., Robert, D., Peguillet, I., Donnadieu, M. H., Dahmani, A., Bessard, M. A., Gentien, D., Reyes, C., Saule, S., Barillot, E., Roman-Roman, S., & Decaudin, D. (2010). Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clinical Cancer Research, 16(8), 2352–2362.CrossRefPubMedGoogle Scholar
  81. 81.
    Hoffman, R. M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nature Reviews. Cancer, 15(8), 451–452.CrossRefPubMedGoogle Scholar
  82. 82.
    Kageyama, K., Ohara, M., Saito, K., Ozaki, S., Terai, M., Mastrangelo, M. J., Fortina, P., Aplin, A. E., & Sato, T. (2017). Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. Journal of Translational Medicine, 15, 145.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tudhope, S. R., Cuthbert, N. J., Abram, T. S., Jennings, M. A., Maxey, R. J., Thompson, A. M., Norman, P., & Gardiner, P. J. (1994). BAY u9773, a novel antagonist of cysteinyl-leukotrienes with activity against two receptor subtypes. European Journal of Pharmacology, 264(3), 317–323.CrossRefPubMedGoogle Scholar
  84. 84.
    Wunder, F., Tinel, H., Kast, R., Geerts, A., Becker, E. M., Kolkhof, P., Hütter, J., Ergüden, J., & Härter, M. (2010). Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT(2)) receptor. British Journal of Pharmacology, 160(2), 399–409.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Khilnani, G., & Khilnani, A. K. (2011). Inverse agonism and its therapeutic significance. Indian Journal of Pharmacology, 43(5), 492–501.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lappano, R., & Maggiolini, M. (2017). Pharmacotherapeutic targeting of G protein-coupled receptors in oncology: examples of approved therapies and emerging concepts. Drugs, 77(9), 951–965.CrossRefPubMedGoogle Scholar
  87. 87.
    Ramsey, D. M., & McAlpine, S. R. (2013). Halting metastasis through CXCR4 inhibition. Bioorganic & Medicinal Chemistry Letters, 23(1), 20–25.CrossRefGoogle Scholar
  88. 88.
    Innamorati, G., Valenti, M. T., Giovinazzo, F., Carbonare, L. D., Parenti, M., & Bassi, C. (2011). Molecular approaches to target GPCRs in cancer therapy. Pharmaceuticals, 4(4), 567–589.CrossRefPubMedCentralGoogle Scholar
  89. 89.
    Dupre, D. J., Le Gouill, C., Gingras, D., Rola-Pleszczynski, M., & Stankova, J. (2004). Inverse agonist activity of selected ligands of the cysteinyl-leukotriene receptor 1. The Journal of Pharmacology and Experimental Therapeutics, 309(1), 102–108.CrossRefPubMedGoogle Scholar
  90. 90.
    Bond, R. A., & Ijzerman, A. P. (2006). Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends in Pharmacological Sciences, 27(2), 92–96.CrossRefPubMedGoogle Scholar
  91. 91.
    Zembowicz, A., & Phadke, P. A. (2011). Blue nevi and variants: an update. Archives of Pathology & Laboratory Medicine, 135(3), 327–336.Google Scholar
  92. 92.
    Costa, S., Byrne, M., Pissaloux, D., Haddad, V., Paindavoine, S., Thomas, L., Aubin, F., Lesimple, T., Grange, F., Bonniaud, B., Mortier, L., Mateus, C., Dreno, B., Balme, B., Vergier, B., & de la Fouchardiere, A. (2016). Melanomas associated with blue nevi or mimicking cellular blue nevi: clinical, pathologic, and molecular study of 11 cases displaying a high frequency of GNA11 mutations, BAP1 expression loss, and a predilection for the scalp. The American Journal of Surgical Pathology, 40(3), 368–377.CrossRefPubMedGoogle Scholar
  93. 93.
    Perez-Alea, M., Vivancos, A., Caratu, G., Matito, J., Ferrer, B., Hernandez-Losa, J., et al. (2016). Genetic profile of GNAQ-mutated blue melanocytic neoplasms reveals mutations in genes linked to genomic instability and the PI3K pathway. Oncotarget, 7(19), 28086–28095.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Rovati, E. G., Bäck, M., Dahlén S.-E., Drazen, J., Evans, J. F., Shimizu, T., et al. Leukotriene receptors: CysLT 2 receptor. IUPHAR/BPS Guide to PHARMACOLOGY; 20/02/2018 [cited 2018 27/05].

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Slater
    • 1
    • 2
  • P. S. Hoo
    • 1
    • 3
  • A. M. Buckley
    • 3
  • J. M. Piulats
    • 4
  • A. Villanueva
    • 5
    • 6
  • A. Portela
    • 5
  • B. N. Kennedy
    • 1
    Email author
  1. 1.UCD School of Biomolecular & Biomedical Science, UCD Conway InstituteUniversity College DublinDublinIreland
  2. 2.Genomics Medicine Ireland LimitedDublinIreland
  3. 3.Department of Surgery, Trinity Translational Medicine Institute, St. James’s HospitalTrinity College DublinDublinIreland
  4. 4.Department of Medical OncologyCatalan Institute of Oncology – IDIBELL - CIBERONCBarcelonaSpain
  5. 5.Xenopat S.L.BarcelonaSpain
  6. 6.Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain

Personalised recommendations