Cancer and Metastasis Reviews

, Volume 37, Issue 4, pp 749–766 | Cite as

Pro-survival autophagy and cancer cell resistance to therapy

  • Chandan Kanta Das
  • Mahitosh Mandal
  • Donat KögelEmail author


Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.


Cancer Therapy resistance Stress condition Pro-survival autophagy 





Mammalian target of rapamycin


Unc-51-like kinase


Vacuolar protein sorting


Lysosomal-associated membrane protein


Ras-related protein


Unfolded protein response


Damage-regulated autophagy modulator


Extracellular signal-regulated kinase




c-Jun N-terminal kinase






Endoplasmic reticulum


Reactive oxygen species


Human epidermal growth factor receptor-2





We would like to thank the German Academic Exchange Service (DAAD), Germany, and the Department of Science and Technology (INSPIRE- IF130677), Govt. of India, India, for providing scholarships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ahmad, A. (2013). Pathways to breast cancer recurrence. ISRN Oncol, 2013, 290568,
  2. 2.
    Ahmad, A., Wang, Z., Ali, R., Bitar, B., Logna, F.T., Maitah, M.Y., Bao, B., Ali, S., Kong, D., Li, Y., & Sarkar, F.H. (2012). Cell cycle regulatory proteins in breast cancer: molecular determinants of drug resistance and targets for anticancer therapies. In R. Aft (Ed.), Targeting New Pathways and Cell Death in Breast Cancer, InTech (pp. 113–130).
  3. 3.
    Ahmad, A., & Sarkar, F. (2013). Current understanding of drug resistance mechanisms and therapeutic targets in HER2 overexpressing breast cancers. In A. Ahmad (Ed.), Breast Cancer Metastasis and Drug Resistance (pp. 261-274): Springer New York.Google Scholar
  4. 4.
    Lehne, G., Elonen, E., Baekelandt, M., Skovsgaard, T., & Peterson, C. (1998). Challenging drug resistance in cancer therapy—review of the first Nordic conference on chemoresistance in cancer treatment, October 9th and 10th, 1997. Acta Oncologica, 37(5), 431–439.Google Scholar
  5. 5.
    Ringborg, U., & Platz, A. (1996). Chemotherapy resistance mechanisms. Acta Oncologica, 35(Suppl 5), 76–80.Google Scholar
  6. 6.
    Luqmani, Y. A. (2005). Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract, 14(Suppl 1), 35–48.Google Scholar
  7. 7.
    Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 5(3), 219–234.Google Scholar
  8. 8.
    Wang, S. H., & Lin, S. Y. (2013). Tumor dormancy: potential therapeutic target in tumor recurrence and metastasis prevention. Experimental Hematology & Oncology, 2(1), 29. Scholar
  9. 9.
    Aqbi, H. F., Butler, S. E., Keim, R., Idowu, M. O., & Manjili, M. H. (2017). Chemotherapy-induced tumor dormancy and relapse. The Journal of Immunology, 198(1 Supplement), 204.207–204.207.Google Scholar
  10. 10.
    Gewirtz, D. A. (2014). Chapter 18-autophagy, stem cells, and tumor dormancy A2-Hayat, M.A. In Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging (pp. 271–276). Amsterdam: Academic Press.Google Scholar
  11. 11.
    Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Reviews. Cancer, 14(9), 611–622. Scholar
  12. 12.
    Lock, R., & Debnath, J. (2008). Extracellular matrix regulation of autophagy. Current Opinion in Cell Biology, 20(5), 583–588. Scholar
  13. 13.
    Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6), 421–429.Google Scholar
  14. 14.
    Mizushima, N., & Klionsky, D. J. (2007). Protein turnover via autophagy: implications for metabolism. Annual Review of Nutrition, 27, 19–40. Scholar
  15. 15.
    Yorimitsu, T., & Klionsky, D. J. (2005). Autophagy: molecular machinery for self-eating. Cell Death and Differentiation, 12(Suppl 2), 1542–1552. Scholar
  16. 16.
    Klionsky, D. J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.Google Scholar
  17. 17.
    Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y., et al. (2015). Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature, 522(7556), 359–362. Scholar
  18. 18.
    Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107–132. Scholar
  19. 19.
    Mukhopadhyay, S., Panda, P. K., Sinha, N., Das, D. N., & Bhutia, S. K. (2014). Autophagy and apoptosis: where do they meet? Apoptosis, 19(4), 555–566. Scholar
  20. 20.
    Simonsen, A., & Tooze, S. A. (2009). Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. Journal of Cell Biology, 186(6), 773–782. Scholar
  21. 21.
    Funderburk, S. F., Wang, Q. J., & Yue, Z. (2010). The Beclin 1-VPS34 complex—at the crossroads of autophagy and beyond. Trends Cell Biol, 20(6), 355–362. Scholar
  22. 22.
    Geng, J., & Klionsky, D. J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9), 859–864. Scholar
  23. 23.
    Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720–5728. Scholar
  24. 24.
    Eskelinen, E. L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Molecular Aspects of Medicine, 27(5–6), 495–502. Scholar
  25. 25.
    Settembre, C., Fraldi, A., Jahreiss, L., Spampanato, C., Venturi, C., Medina, D., et al. (2008). A block of autophagy in lysosomal storage disorders. Human Molecular Genetics, 17(1), 119–129. Scholar
  26. 26.
    Eskelinen, E. L., & Saftig, P. (2009). Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochimica et Biophysica Acta, 1793(4), 664–673. Scholar
  27. 27.
    Saftig, P., Beertsen, W., & Eskelinen, E. L. (2008). LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy, 4(4), 510–512.Google Scholar
  28. 28.
    Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J., & van Deurs, B. (2000). Rab7: a key to lysosome biogenesis. Molecular Biology of the Cell, 11(2), 467–480.Google Scholar
  29. 29.
    Bhutia, S. K., Mukhopadhyay, S., Sinha, N., Das, D. N., Panda, P. K., Patra, S. K., et al. (2013). Autophagy: cancer’s friend or foe? Advances in Cancer Research, 118, 61–95. Scholar
  30. 30.
    Wesselborg, S., & Stork, B. (2015). Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cellular and Molecular Life Sciences, 72(24), 4721–4757. Scholar
  31. 31.
    White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer, 12(6), 401–410.Google Scholar
  32. 32.
    Fulda, S., & Kogel, D. (2015). Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene, 34(40), 5105–5113. Scholar
  33. 33.
    White, E. (2015). The role for autophagy in cancer. Journal of Clinical Investigation, 125(1), 42–46.Google Scholar
  34. 34.
    Qin, L., Wang, Z., Tao, L., & Wang, Y. (2010). ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy, 6(2), 239–247.Google Scholar
  35. 35.
    Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 13(2), 89–102.Google Scholar
  36. 36.
    Verfaillie, T., Salazar, M., Velasco, G., & Agostinis, P. (2010). Linking ER stress to autophagy: potential implications for cancer therapy. International Journal Cell Biology, 2010, 930509. Scholar
  37. 37.
    Avivar-Valderas, A., Bobrovnikova-Marjon, E., Alan Diehl, J., Bardeesy, N., Debnath, J., & Aguirre-Ghiso, J. A. (2013). Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene, 32(41), 4932–4940. Scholar
  38. 38.
    Lin, C. J., Lee, C. C., Shih, Y. L., Lin, C. H., Wang, S. H., Chen, T. H., et al. (2012). Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One, 7(6), e38706. Scholar
  39. 39.
    Cheng, X., Liu, H., Jiang, C. C., Fang, L., Chen, C., Zhang, X. D., et al. (2014). Connecting endoplasmic reticulum stress to autophagy through IRE1/JNK/beclin-1 in breast cancer cells. International Journal of Molecular Medicine, 34(3), 772–781. Scholar
  40. 40.
    Ma, T., Li, Y. Y., Zhu, J., Fan, L. L., Du, W. D., Wu, C. H., et al. (2013). Enhanced autophagic flux by endoplasmic reticulum stress in human hepatocellular carcinoma cells contributes to the maintenance of cell viability. Oncology Reports, 30(1), 433–440. Scholar
  41. 41.
    Jagannathan, S., Abdel-Malek, M. A., Malek, E., Vad, N., Latif, T., Anderson, K. C., et al. (2015). Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib. Leukemia, 29(11), 2184–2191. Scholar
  42. 42.
    Tabas, I., & Ron, D. (2011). Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology, 13(3), 184–190. Scholar
  43. 43.
    Liu, K., Shi, Y., Guo, X., Wang, S., Ouyang, Y., Hao, M., et al. (2014). CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Disease, 5, e1323. Scholar
  44. 44.
    Teske, B. F., Fusakio, M. E., Zhou, D., Shan, J., McClintick, J. N., Kilberg, M. S., et al. (2013). CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis. Molecular Biology of the Cell, 24(15), 2477–2490. Scholar
  45. 45.
    Rao, J., Zhang, C., Wang, P., Lu, L., Qian, X., Qin, J., et al. (2015). C/EBP homologous protein (CHOP) contributes to hepatocyte death via the promotion of ERO1alpha signalling in acute liver failure. Biochemical Journal, 466(2), 369–378. Scholar
  46. 46.
    B'Chir, W., Chaveroux, C., Carraro, V., Averous, J., Maurin, A. C., Jousse, C., et al. (2014). Dual role for CHOP in the crosstalk between autophagy and apoptosis to determine cell fate in response to amino acid deprivation. Cell Signalling, 26(7), 1385–1391. Scholar
  47. 47.
    Gomes, L. C., Di Benedetto, G., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13(5), 589–598.Google Scholar
  48. 48.
    Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A, 107(1), 378–383. Scholar
  49. 49.
    Villa, E., Proics, E., Rubio-Patino, C., Obba, S., Zunino, B., Bossowski, J. P., et al. (2017). Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Reports, 20(12), 2846–2859. Scholar
  50. 50.
    Chang, J. Y., Yi, H. S., Kim, H. W., & Shong, M. (2017). Dysregulation of mitophagy in carcinogenesis and tumor progression. Biochimica Biophysica Acta, 1858(8), 633–640. Scholar
  51. 51.
    Su, Y. C., Davuluri, G. V., Chen, C. H., Shiau, D. C., Chen, C. C., Chen, C. L., et al. (2016). Galectin-1-induced autophagy facilitates cisplatin resistance of hepatocellular carcinoma. PLoS One, 11(2), e0148408. Scholar
  52. 52.
    Jangamreddy, J. R., Ghavami, S., Grabarek, J., Kratz, G., Wiechec, E., Fredriksson, B. A., et al. (2013). Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. Biochimica et Biophysica Acta, 1833(9), 2057–2069. Scholar
  53. 53.
    Holmstrom, K. M., & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology, 15(6), 411–421. Scholar
  54. 54.
    Trachootham, D., Lu, W., Ogasawara, M. A., Nilsa, R. D., & Huang, P. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling, 10(8), 1343–1374. Scholar
  55. 55.
    Zhou, H., Shen, T., Shang, C., Luo, Y., Liu, L., Yan, J., et al. (2014). Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway. Oncotarget, 5(20), 10140–10150. Scholar
  56. 56.
    Cardaci, S., Filomeni, G., & Ciriolo, M. R. (2012). Redox implications of AMPK-mediated signal transduction beyond energetic clues. Journal of Cell Science, 125(Pt 9), 2115–2125. Scholar
  57. 57.
    Zhang, H., Lei, Y., Yuan, P., Li, L., Luo, C., Gao, R., et al. (2014). ROS-mediated autophagy induced by dysregulation of lipid metabolism plays a protective role in colorectal cancer cells treated with gambogic acid. PLoS One, 9(5), e96418. Scholar
  58. 58.
    Chen, X., Tan, M., Xie, Z., Feng, B., Zhao, Z., Yang, K., et al. (2016). Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin-induced apoptosis in human hepatocellular carcinoma cells. Free Radical Research, 50(7), 744–755. Scholar
  59. 59.
    Meher, P., & Mishra, K. (2017). Radiation oxidative stress in cancer induction and prevention. [review article]. Journal of Radiation and Cancer Research, 8(1), 44–52. Scholar
  60. 60.
    Chen, N., Wu, L., Yuan, H., & Wang, J. (2015). ROS/autophagy/Nrf2 pathway mediated low-dose radiation induced radio-resistance in human lung adenocarcinoma A549 cell. International Journal of Biological Sciences, 11(7), 833–844. Scholar
  61. 61.
    Hu, L., Wang, H., Huang, L., Zhao, Y., & Wang, J. (2016). The protective roles of ROS-mediated Mitophagy on (125)I seeds radiation induced cell death in HCT116 cells. Oxidative Medicine and Cellular Longevity, 2016, 9460462. Scholar
  62. 62.
    Bae, H., & Guan, J. L. (2011). Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Molecular Cancer Research, 9(9), 1232–1241. Scholar
  63. 63.
    Tu, P., Huang, Q., Ou, Y., Du, X., Li, K., Tao, Y., et al. (2016). Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG63 through the ROS/JNK signaling pathway. Oncology Reports, 35(6), 3209–3215. Scholar
  64. 64.
    Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40(2), 294–309. Scholar
  65. 65.
    Moreau, K., Luo, S., & Rubinsztein, D. C. (2010). Cytoprotective roles for autophagy. Current Opinion Cell Biology, 22(2), 206–211. Scholar
  66. 66.
    Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3(1), 28–31.Google Scholar
  67. 67.
    Mazure, N. M., & Pouyssegur, J. (2010). Hypoxia-induced autophagy: cell death or cell survival? Current Opinion Cell Biology, 22(2), 177–180. Scholar
  68. 68.
    Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226. Scholar
  69. 69.
    Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1), 9–22. Scholar
  70. 70.
    Liao, X. H., Majithia, A., Huang, X., & Kimmel, A. R. (2008). Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids, 35(4), 761–770. Scholar
  71. 71.
    Kumar, S. H., & Rangarajan, A. (2009). Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. Journal Virol, 83(17), 8565–8574. Scholar
  72. 72.
    Sato, K., Tsuchihara, K., Fujii, S., Sugiyama, M., Goya, T., Atomi, Y., et al. (2007). Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Research, 67(20), 9677–9684. Scholar
  73. 73.
    Vaupel, P., Briest, S., & Hockel, M. (2002). Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wiener Medizinische Wochenschrift (1946), 152(13–14), 334–342.Google Scholar
  74. 74.
    Hu, Y. L., DeLay, M., Jahangiri, A., Molinaro, A. M., Rose, S. D., Carbonell, W. S., et al. (2012). Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Research, 72(7), 1773–1783. Scholar
  75. 75.
    Feng, H., Wang, J., Chen, W., Shan, B., Guo, Y., Xu, J., et al. (2016). Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance. Journal of Bone Oncology, 5(2), 67–73. Scholar
  76. 76.
    Bhalla, S., Evens, A. M., Prachand, S., Schumacker, P. T., & Gordon, L. I. (2013). Paradoxical regulation of hypoxia inducible factor-1alpha (HIF-1alpha) by histone deacetylase inhibitor in diffuse large B-cell lymphoma. PLoS One, 8(11), e81333. Scholar
  77. 77.
    Huang, Z., Zhou, L., Chen, Z., Nice, E. C., & Huang, C. (2016). Stress management by autophagy: implications for chemoresistance. International Journal of Cancer, 139(1), 23–32. Scholar
  78. 78.
    Alexander, A., Cai, S. L., Kim, J., Nanez, A., Sahin, M., MacLean, K. H., et al. (2010). ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A, 107(9), 4153–4158. Scholar
  79. 79.
    Tripathi, D. N., Chowdhury, R., Trudel, L. J., Tee, A. R., Slack, R. S., Walker, C. L., et al. (2013). Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A, 110(32), E2950–E2957. Scholar
  80. 80.
    Zhang, D., Tang, B., Xie, X., Xiao, Y. F., Yang, S. M., & Zhang, J. W. (2015). The interplay between DNA repair and autophagy in cancer therapy. Cancer Biology & Therapy, 16(7), 1005–1013. Scholar
  81. 81.
    Levine, B., & Abrams, J. (2008). p53: The Janus of autophagy? Nature Cell Biology, 10(6), 637–639. Scholar
  82. 82.
    Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., et al. (2008). Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 10(6), 676–687.Google Scholar
  83. 83.
    Budanov, A. V., & Karin, M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 134(3), 451–460. Scholar
  84. 84.
    Lorin, S., Pierron, G., Ryan, K. M., Codogno, P., & Djavaheri-Mergny, M. (2010). Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy, 6(1), 153–154.Google Scholar
  85. 85.
    Chen, L. H., Loong, C. C., Su, T. L., Lee, Y. J., Chu, P. M., Tsai, M. L., et al. (2011). Autophagy inhibition enhances apoptosis triggered by BO-1051, an N-mustard derivative, and involves the ATM signaling pathway. Biochemical Pharmacology, 81(5), 594–605. Scholar
  86. 86.
    Li, X., Wang, J., Ye, Z., & Li, J. C. (2012). Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells. International Journal of Biological Sciences, 8(6), 901–912. Scholar
  87. 87.
    Yoon, J. H., Ahn, S. G., Lee, B. H., Jung, S. H., & Oh, S. H. (2012). Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1. Biochemical Pharmacology, 83(6), 747–757. Scholar
  88. 88.
    Eapen, V. V., & Haber, J. E. (2013). DNA damage signaling triggers the cytoplasm-to-vacuole pathway of autophagy to regulate cell cycle progression. Autophagy, 9(3), 440–441. Scholar
  89. 89.
    Robert, T., Vanoli, F., Chiolo, I., Shubassi, G., Bernstein, K. A., Rothstein, R., et al. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 471(7336), 74–79. Scholar
  90. 90.
    Orlotti, N. I., Cimino-Reale, G., Borghini, E., Pennati, M., Sissi, C., Perrone, F., et al. (2012). Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy, 8(8), 1185–1196. Scholar
  91. 91.
    Eliopoulos, A. G., Havaki, S., & Gorgoulis, V. G. (2016). DNA damage response and autophagy: a meaningful partnership. Frontiers in Genetics, 7, 204. Scholar
  92. 92.
    Gomes, L. R., Menck, C. F. M., & Leandro, G. S. (2017). Autophagy roles in the modulation of DNA repair pathways. International Journal of Molecular Sciences, 18(11).
  93. 93.
    Liu, E. Y., Xu, N., O'Prey, J., Lao, L. Y., Joshi, S., Long, J. S., et al. (2015). Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 112(3), 773–778. Scholar
  94. 94.
    Gillespie, D. A., & Ryan, K. M. (2016). Autophagy is critically required for DNA repair by homologous recombination. Molecular and Cell Oncology, 3(1), e1030538. Scholar
  95. 95.
    Yang, Y., He, S., Wang, Q., Li, F., Kwak, M. J., Chen, S., et al. (2016). Autophagic UVRAG promotes UV-induced photolesion repair by activation of the CRL4(DDB2) E3 ligase. Molecular Cell, 62(4), 507–519. Scholar
  96. 96.
    Qiang, L., Zhao, B., Shah, P., Sample, A., Yang, S., & He, Y. Y. (2016). Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy, 12(2), 357–368. Scholar
  97. 97.
    Chen, S., Wang, C., Sun, L., Wang, D. L., Chen, L., Huang, Z., et al. (2015). RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1. Molecular and Cellular Biology, 35(2), 406–416. Scholar
  98. 98.
    Lin, W., Yuan, N., Wang, Z., Cao, Y., Fang, Y., Li, X., et al. (2015). Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury. Scientific Reports, 5, 12362. Scholar
  99. 99.
    Yin, X., Cao, L., Kang, R., Yang, M., Wang, Z., Peng, Y., et al. (2011). UV irradiation resistance-associated gene suppresses apoptosis by interfering with BAX activation. EMBO Reports, 12(7), 727–734. Scholar
  100. 100.
    Ko, A., Kanehisa, A., Martins, I., Senovilla, L., Chargari, C., Dugue, D., et al. (2014). Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death and Differentiation, 21(1), 92–99. Scholar
  101. 101.
    Wang, Y., Zhang, N., Zhang, L., Li, R., Fu, W., Ma, K., et al. Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62. Molecular Cellular, 63(1), 34–48.
  102. 102.
    Feng, Y., & Klionsky, D. J. (2017). Autophagy regulates DNA repair through SQSTM1/p62. Autophagy, 13(6), 995–996. Scholar
  103. 103.
    Choi, C. H., Jung, Y. K., & Oh, S. H. (2010). Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol, 78(1), 114–125. Scholar
  104. 104.
    Vazquez-Martin, A., Oliveras-Ferraros, C., & Menendez, J. A. (2009). Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One, 4(7), e6251. Scholar
  105. 105.
    Cufi, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Corominas-Faja, B., Urruticoechea, A., Martin-Castillo, B., et al. (2012). Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget, 3(12), 1600–1614. Scholar
  106. 106.
    Sun, W. L., Chen, J., Wang, Y. P., & Zheng, H. (2011). Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy, 7(9), 1035–1044.Google Scholar
  107. 107.
    Li, Y., Zhang, Q., Tian, R., Wang, Q., Zhao, J. J., Iglehart, J. D., et al. (2011). Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells. Cancer Research, 71(24), 7481–7489. Scholar
  108. 108.
    Qadir, M. A., Kwok, B., Dragowska, W. H., To, K. H, Le, D., Bally, M. B., et al. (2008). Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Research and Treatment, 112(3), 389–403. Scholar
  109. 109.
    Notte, A., Ninane, N., Arnould, T., & Michiels, C. (2013). Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation. Cell Death Disease, 4, e638. Scholar
  110. 110.
    Desai, S., Liu, Z., Yao, J., Patel, N., Chen, J., Wu, Y., et al. (2013). Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). Journal Biological Chemistry, 288(13), 9165–9176. Scholar
  111. 111.
    Milani, M., Rzymski, T., Mellor, H. R., Pike, L., Bottini, A., Generali, D., et al. (2009). The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Research, 69(10), 4415–4423. Scholar
  112. 112.
    Tekedereli, I., Alpay, S. N., Tavares, C. D., Cobanoglu, Z. E., Kaoud, T. S., Sahin, I., et al. (2012). Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer. PLoS One, 7(7), e41171. Scholar
  113. 113.
    Mai, T. T., Moon, J., Song, Y., Viet, P. Q., Phuc, P. V., Lee, J. M., et al. (2012). Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Letters, 321(2), 144–153. Scholar
  114. 114.
    Wen, J., Yeo, S., Wang, C., Chen, S., Sun, S., Haas, M. A., et al. (2015). Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis. Breast Cancer Research and Treatment, 149(3), 619–629. Scholar
  115. 115.
    Han, M. W., Lee, J. C., Choi, J. Y., Kim, G. C., Chang, H. W., Nam, H. Y., et al. (2014). Autophagy inhibition can overcome radioresistance in breast cancer cells through suppression of TAK1 activation. Anticancer Res, 34(3), 1449–1455.Google Scholar
  116. 116.
    Wang, S. M., Li, X. H., & Xiu, Z. L. (2014). Over-expression of Beclin-1 facilitates acquired resistance to histone deacetylase inhibitor-induced apoptosis. Asian Pacific Journal of Cancer Prevention, 15(18), 7913–7917.Google Scholar
  117. 117.
    Sakuma, Y., Matsukuma, S., Nakamura, Y., Yoshihara, M., Koizume, S., Sekiguchi, H., et al. (2013). Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Laboratory Investigation, 93(10), 1137–1146. Scholar
  118. 118.
    Nihira, K., Miki, Y., Iida, S., Narumi, S., Ono, K., Iwabuchi, E., et al. (2014). An activation of LC3A-mediated autophagy contributes to de novo and acquired resistance to EGFR tyrosine kinase inhibitors in lung adenocarcinoma. The Journal of Pathology, 234(2), 277–288. Scholar
  119. 119.
    Hsieh, M. J., Lin, C. W., Yang, S. F., Sheu, G. T., Yu, Y. Y., Chen, M. K., et al. (2014). A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells. Toxicological Sciences, 137(1), 65–75. Scholar
  120. 120.
    Ji, C., Zhang, L., Cheng, Y., Patel, R., Wu, H., Zhang, Y., et al. (2014). Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer. Cancer Biology and Therapy, 15(5), 570–577. Scholar
  121. 121.
    Chatterjee, A., Chattopadhyay, D., & Chakrabarti, G. (2014). miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One, 9(4), e95716. Scholar
  122. 122.
    Izdebska, M., Klimaszewska-Wisniewska, A., Halas, M., Gagat, M., & Grzanka, A. (2015). Green tea extract induces protective autophagy in A549 non-small lung cancer cell line. Postȩpy Higieny i Medycyny Doświadczalnej (Online), 69, 1478–1484.Google Scholar
  123. 123.
    Ma, G., Luo, W., Lu, J., Ma, D. L., Leung, C. H., Wang, Y., et al. (2016). Cucurbitacin E induces caspase-dependent apoptosis and protective autophagy mediated by ROS in lung cancer cells. Chemico-Biological Interactions, 253, 1–9. Scholar
  124. 124.
    Chen, X., Wang, P., Guo, F., Wang, X., Wang, J., Xu, J., et al. (2017). Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition. International Journal of Radiation Biology, 93(8), 764–770. Scholar
  125. 125.
    Wu, H. M., Jiang, Z. F., Ding, P. S., Shao, L. J., & Liu, R. Y. (2015). Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Scientific Reports, 5, 12291. Scholar
  126. 126.
    Lee, J. G., Shin, J. H., Shim, H. S., Lee, C. Y., Kim, D. J., Kim, Y. S., et al. (2015). Autophagy contributes to the chemo-resistance of non-small cell lung cancer in hypoxic conditions. Respiratory Research, 16, 138. Scholar
  127. 127.
    Habeeb, B. S., Kitayama, J., & Nagawa, H. (2011). Adiponectin supports cell survival in glucose deprivation through enhancement of autophagic response in colorectal cancer cells. Cancer Science, 102(5), 999–1006. Scholar
  128. 128.
    Yang, X., Niu, B., Wang, L., Chen, M., Kang, X., Ji, Y., et al. (2016). Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Oncology Letters, 12(1), 102–106. Scholar
  129. 129.
    Sueda, T., Sakai, D., Kawamoto, K., Konno, M., Nishida, N., Koseki, J., et al. (2016). BRAF V600E inhibition stimulates AMP-activated protein kinase-mediated autophagy in colorectal cancer cells. Science Reports, 6, 18949. Scholar
  130. 130.
    Min, H., Xu, M., Chen, Z. R., Zhou, J. D., Huang, M., Zheng, K., et al. (2014). Bortezomib induces protective autophagy through AMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemotherapy and Pharmacology, 74(1), 167–176. Scholar
  131. 131.
    Din, F. V., Valanciute, A., Houde, V. P., Zibrova, D., Green, K. A., Sakamoto, K., et al. (2012). Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 142(7), 1504–1515 e1503. Scholar
  132. 132.
    Makhov, P., Golovine, K., Teper, E., Kutikov, A., Mehrazin, R., Corcoran, A., et al. (2014). Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. British Journal of Cancer, 110(4), 899–907. Scholar
  133. 133.
    Luo, G. X., Cai, J., Lin, J. Z., Luo, W. S., Luo, H. S., Jiang, Y. Y., et al. (2012). Autophagy inhibition promotes gambogic acid-induced suppression of growth and apoptosis in glioblastoma cells. Asian Pacific Journal of Cancer Prevention, 13(12), 6211–6216.Google Scholar
  134. 134.
    Shen, J., Zheng, H., Ruan, J., Fang, W., Li, A., Tian, G., et al. (2013). Autophagy inhibition induces enhanced proapoptotic effects of ZD6474 in glioblastoma. British Journal of Cancer, 109(1), 164–171. Scholar
  135. 135.
    Yuan, G., Yan, S. F., Xue, H., Zhang, P., Sun, J. T., & Li, G. (2014). Cucurbitacin I induces protective autophagy in glioblastoma in vitro and in vivo. Journal of Biological Chemistry, 289(15), 10607–10619. Scholar
  136. 136.
    Yu, S. H., Kao, Y. T., Wu, J. Y., Huang, S. H., Huang, S. T., Lee, C. M., et al. (2011). Inhibition of AMPK-associated autophagy enhances caffeic acid phenethyl ester-induced cell death in C6 glioma cells. Planta Medica, 77(9), 907–914. Scholar
  137. 137.
    Su, J., Xu, Y., Zhou, L., Yu, H. M., Kang, J. S., Liu, N., et al. (2013). Suppression of chloride channel 3 expression facilitates sensitivity of human glioma U251 cells to cisplatin through concomitant inhibition of Akt and autophagy. Anat Rec (Hoboken), 296(4), 595–603. Scholar
  138. 138.
    Brasseur, K., Leblanc, V., Fabi, F., Parent, S., Descoteaux, C., Berube, G., et al. (2013). ERalpha-targeted therapy in ovarian cancer cells by a novel estradiol-platinum(II) hybrid. Endocrinology, 154(7), 2281–2295. Scholar
  139. 139.
    Zhang, C., Jiang, Y., Zhang, J., Huang, J., & Wang, J. (2015). 8-p-Hdroxybenzoyl tovarol induces paraptosis like cell death and protective autophagy in human cervical cancer HeLa cells. International Journal of Molecular Sciences, 16(7), 14979–14996. Scholar
  140. 140.
    Wang, J., & Wu, G. S. (2014). Role of autophagy in cisplatin resistance in ovarian cancer cells. Journal of Biological Chemistry, 289(24), 17163–17173. Scholar
  141. 141.
    Xu, L., Liu, J. H., Zhang, J., Zhang, N., & Wang, Z. H. (2015). Blockade of autophagy aggravates endoplasmic reticulum stress and improves paclitaxel cytotoxicity in human cervical cancer cells. Cancer Research and Treatment, 47(2), 313–321. Scholar
  142. 142.
    Peng, X., Gong, F., Chen, Y., Jiang, Y., Liu, J., Yu, M., et al. (2014). Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-alpha-mediated signaling. Cell Death and Disease, 5, e1367. Scholar
  143. 143.
    Shi, Y. H., Ding, Z. B., Zhou, J., Hui, B., Shi, G. M., Ke, A. W., et al. (2011). Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy, 7(10), 1159–1172. Scholar
  144. 144.
    Ding, Z. B., Hui, B., Shi, Y. H., Zhou, J., Peng, Y. F., Gu, C. Y., et al. (2011). Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clinical Cancer Research, 17(19), 6229–6238.
  145. 145.
    Peng, W. X., Wan, Y. Y., Gong, A. H., Ge, L., Jin, J., Xu, M., et al. (2017). Egr-1 regulates irradiation-induced autophagy through Atg4B to promote radioresistance in hepatocellular carcinoma cells. Oncogenesis, 6(1), e292. Scholar
  146. 146.
    Fiorini, C., Cordani, M., Padroni, C., Blandino, G., Di Agostino, S., & Donadelli, M. (2015). Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochimical et Biophysica Acta, 1853(1), 89–100. Scholar
  147. 147.
    Yang, M. C., Wang, H. C., Hou, Y. C., Tung, H. L., Chiu, T. J., & Shan, Y. S. (2015). Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Molecular Cancer, 14, 179. Scholar
  148. 148.
    Lin, J. F., Tsai, T. F., Liao, P. C., Lin, Y. H., Lin, Y. C., Chen, H. E., et al. (2013). Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis, 34(2), 406–414. Scholar
  149. 149.
    Naponelli, V., Modernelli, A., Bettuzzi, S., & Rizzi, F. (2015). Roles of autophagy induced by natural compounds in prostate cancer. BioMed Research International, 2015, 121826. Scholar
  150. 150.
    Shin, S. W., Kim, S. Y., & Park, J. W. (2012). Autophagy inhibition enhances ursolic acid-induced apoptosis in PC3 cells. Biochimica et Biophysica Acta, 1823(2), 451–457. Scholar
  151. 151.
    O'Donovan, T. R., O'Sullivan, G. C., & McKenna, S. L. (2011). Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy, 7(5), 509–524.Google Scholar
  152. 152.
    Yu, L., Gu, C., Zhong, D., Shi, L., Kong, Y., Zhou, Z., et al. (2014). Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett, 355(1), 34–45. Scholar
  153. 153.
    Kang, R., Wang, Z. H., Wang, B. Q., Zhang, C. M., Gao, W., Feng, Y., et al. (2012). Inhibition of autophagy-potentiated chemosensitivity to cisplatin in laryngeal cancer Hep-2 cells. Am J Otolaryngol, 33(6), 678–684. Scholar
  154. 154.
    Masui, A., Hamada, M., Kameyama, H., Wakabayashi, K., Takasu, A., Imai, T., et al. (2016). Autophagy as a survival mechanism for squamous cell carcinoma cells in endonuclease G-mediated apoptosis. PLoS One, 11(9), e0162786. Scholar
  155. 155.
    Tong, Y., Liu, Y. Y., You, L. S., & Qian, W. B. (2012). Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacologica Sinica, 33(4), 542–550. Scholar
  156. 156.
    Han, W., Sun, J., Feng, L., Wang, K., Li, D., Pan, Q., et al. (2011). Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS One, 6(12), e28491, doi:
  157. 157.
    Song, P., Ye, L., Fan, J., Li, Y., Zeng, X., Wang, Z., et al. (2015). Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget, 6(6), 3861–3873.Google Scholar
  158. 158.
    Wang, Z., Zhu, S., Zhang, G., & Liu, S. (2015). Inhibition of autophagy enhances the anticancer activity of bortezomib in B-cell acute lymphoblastic leukemia cells. American Journal of Cancer Research, 5(2), 639–650.Google Scholar
  159. 159.
    Baumann, M., Krause, M., Overgaard, J., Debus, J., Bentzen, S. M., Daartz, J., et al. (2016). Radiation oncology in the era of precision medicine. Nature Reviews Cancer, 16(4), 234–249. Scholar
  160. 160.
    Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: current advances and future directions. International Journal of Medical Sciences, 9(3), 193–199. Scholar
  161. 161.
    Kelley, K., Knisely, J., Symons, M., & Ruggieri, R. (2016). Radioresistance of brain tumors. Cancers (Basel), 8(4).
  162. 162.
    Zhuang, W., Qin, Z., & Liang, Z. (2009). The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai), 41(5), 341–351.Google Scholar
  163. 163.
    Apel, A., Herr, I., Schwarz, H., Rodemann, H. P., & Mayer, A. (2008). Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Research, 68(5), 1485–1494. Scholar
  164. 164.
    Cerniglia, G. J., Karar, J., Tyagi, S., Christofidou-Solomidou, M., Rengan, R., Koumenis, C., et al. (2012). Inhibition of autophagy as a strategy to augment radiosensitization by the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Molecular Pharmacology, 82(6), 1230–1240. Scholar
  165. 165.
    Lomonaco, S. L., Finniss, S., Xiang, C., Decarvalho, A., Umansky, F., Kalkanis, S. N., et al. (2009). The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. International Journal of Cancer, 125(3), 717–722. Scholar
  166. 166.
    Firat, E., Weyerbrock, A., Gaedicke, S., Grosu, A. L., & Niedermann, G. (2012). Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote gamma-irradiation-induced cell death in primary stem-like glioma cells. PLoS One, 7(10), e47357. Scholar
  167. 167.
    Ye, F., Zhang, Y., Liu, Y., Yamada, K., Tso, J. L., Menjivar, J. C., et al. (2013). Protective properties of radio-chemoresistant glioblastoma stem cell clones are associated with metabolic adaptation to reduced glucose dependence. PLoS One, 8(11), e80397. Scholar
  168. 168.
    Yuan, X., Du, J., Hua, S., Zhang, H., Gu, C., Wang, J., et al. (2015). Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res, 330(2), 267–276. Scholar
  169. 169.
    Chen, Y. S., Song, H. X., Lu, Y., Li, X., Chen, T., Zhang, Y., et al. (2011). Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells. Diseases of the Esophagus, 24(6), 437–443. Scholar
  170. 170.
    Malet-Martino, M., Jolimaitre, P., & Martino, R. (2002). The prodrugs of 5-fluorouracil. Current Medicinal Chemistry. Anti-Cancer Agents, 2(2), 267–310.Google Scholar
  171. 171.
    Walko, C. M., & Lindley, C. (2005). Capecitabine: A review. Clin Ther, 27(1), 23–44. Scholar
  172. 172.
    Park, J. M., Huang, S., Wu, T. T., Foster, N. R., & Sinicrope, F. A. (2013). Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biology and Therapy, 14(2), 100–107. Scholar
  173. 173.
    Sui, X., Kong, N., Wang, X., Fang, Y., Hu, X., Xu, Y., et al. (2014). JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep, 4, 4694.Google Scholar
  174. 174.
    Liang, X., Tang, J., Liang, Y., Jin, R., & Cai, X. (2014). Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells. Cell and Bioscience, 4(1), 10. Scholar
  175. 175.
    Zhu, W., Zhou, L., Qian, J. Q., Qiu, T. Z., Shu, Y. Q., & Liu, P. (2014). Temozolomide for treatment of brain metastases: a review of 21 clinical trials. World Journal of Clinical Oncology, 5(1), 19–27. Scholar
  176. 176.
    Yan, Y., Xu, Z., Dai, S., Qian, L., Sun, L., & Gong, Z. (2016). Targeting autophagy to sensitive glioma to temozolomide treatment. Journal of Experimental & Clinical Cancer Research, 35, 23. Scholar
  177. 177.
    Wurstle, S., Schneider, F., Ringel, F., Gempt, J., Lammer, F., Delbridge, C., et al. (2017). Temozolomide induces autophagy in primary and established glioblastoma cells in an EGFR independent manner. Oncology Letters, 14(1), 322–328. Scholar
  178. 178.
    Zou, Y., Wang, Q., Li, B., Xie, B., & Wang, W. (2014). Temozolomide induces autophagy via ATMAMPKULK1 pathways in glioma. Molecular Medicine Reports, 10(1), 411–416. Scholar
  179. 179.
    Lin, C. J., Lee, C. C., Shih, Y. L., Lin, T. Y., Wang, S. H., Lin, Y. F., et al. (2012). Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radical Biology and Medicine, 52(2), 377–391. Scholar
  180. 180.
    Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., et al. (2012). Molecular mechanisms of cisplatin resistance. Oncogene, 31(15), 1869–1883. Scholar
  181. 181.
    Ferreira, J. A., Peixoto, A., Neves, M., Gaiteiro, C., Reis, C. A., Assaraf, Y. G., et al. (2016). Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resist Updat, 24, 34–54. Scholar
  182. 182.
    Bao, L., Jaramillo, M. C., Zhang, Z., Zheng, Y., Yao, M., Zhang, D. D., et al. (2015). Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Molecular Medicine Reports, 11(1), 91–98. Scholar
  183. 183.
    Liu, D., Yang, Y., Liu, Q., & Wang, J. (2011). Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Medical Oncology, 28(1), 105–111. Scholar
  184. 184.
    Zhu, L., Du, H., Shi, M., Chen, Z., & Hang, J. (2013). ATG7 deficiency promote apoptotic death induced by cisplatin in human esophageal squamous cell carcinoma cells. Bulletin Cancer, 100(7-8), 15–21. Scholar
  185. 185.
    Cheng, C. Y., Liu, J. C., Wang, J. J., Li, Y. H., Pan, J., & Zhang, Y. R. (2017). Autophagy inhibition increased the anti-tumor effect of cisplatin on drug-resistant esophageal cancer cells. Journal of Biological Regulators and Homeostatic Agents, 31(3), 645–652.Google Scholar
  186. 186.
    Shuptrine, C. W., Surana, R., & Weiner, L. M. (2012). Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol, 22(1), 3–13. Scholar
  187. 187.
    Kubota, T., Niwa, R., Satoh, M., Akinaga, S., Shitara, K., & Hanai, N. (2009). Engineered therapeutic antibodies with improved effector functions. Cancer Science, 100(9), 1566–1572. Scholar
  188. 188.
    Zambrano, J., & Yeh, E. S. (2016). Autophagy and apoptotic crosstalk: mechanism of therapeutic resistance in HER2-positive breast cancer. Breast Cancer (Auckl.), 10, 13–23. Scholar
  189. 189.
    Guo, X. L., Li, D., Sun, K., Wang, J., Liu, Y., Song, J. R., et al. (2013). Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med (Berl), 91(4), 473–483. Scholar
  190. 190.
    Li, Y. Y., Lam, S. K., Mak, J. C., Zheng, C. Y., & Ho, J. C. (2013). Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer. Lung Cancer, 81(3), 354–361. Scholar
  191. 191.
    Han, W., Pan, H., Chen, Y., Sun, J., Wang, Y., Li, J., et al. (2011). EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One, 6(6), e18691. Scholar
  192. 192.
    Lee, J. G., & Wu, R. (2012). Combination erlotinib-cisplatin and Atg3-mediated autophagy in erlotinib resistant lung cancer. PLoS One, 7(10), e48532. Scholar
  193. 193.
    Zou, Y., Ling, Y. H., Sironi, J., Schwartz, E. L., Perez-Soler, R., & Piperdi, B. (2013). The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. Journal of Thoracic Oncology, 8(6), 693–702. Scholar
  194. 194.
    Salomoni, P., & Calabretta, B. (2009). Targeted therapies and autophagy: new insights from chronic myeloid leukemia. Autophagy, 5(7), 1050–1051.Google Scholar
  195. 195.
    Mirzoeva, O. K., Hann, B., Hom, Y. K., Debnath, J., Aftab, D., Shokat, K., et al. (2011). Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. Journal of Molecular Medicine (Berl), 89(9), 877–889. Scholar
  196. 196.
    Zhai, B., Hu, F., Jiang, X., Xu, J., Zhao, D., Liu, B., et al. (2014). Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Molecular Cancer Therapeutics, 13(6), 1589–1598 doi:1535–7163.MCT-13-1043.Google Scholar
  197. 197.
    Saleem, A., Dvorzhinski, D., Santanam, U., Mathew, R., Bray, K., Stein, M., et al. (2012). Effect of dual inhibition of apoptosis and autophagy in prostate cancer. Prostate, 72(12), 1374–1381. Scholar
  198. 198.
    Ni, Z., Wang, B., Dai, X., Ding, W., Yang, T., Li, X., et al. (2014). HCC cells with high levels of Bcl-2 are resistant to ABT-737 via activation of the ROS-JNK-autophagy pathway. Free Radical Biology and Medicine, 70, 194–203. Scholar
  199. 199.
    Zinn, R. L., Gardner, E. E., Dobromilskaya, I., Murphy, S., Marchionni, L., Hann, C. L., et al. (2013). Combination treatment with ABT-737 and chloroquine in preclinical models of small cell lung cancer. Mol Cancer, 12, 16. Scholar
  200. 200.
    Nagelkerke, A., Sieuwerts, A. M., Bussink, J., Sweep, F. C., Look, M. P., Foekens, J. A., et al. (2014). LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy. Endocr Relat Cancer, 21(1), 101–112. Scholar
  201. 201.
    Cook, K. L., Shajahan, A. N., & Clarke, R. (2011). Autophagy and endocrine resistance in breast cancer. Expert Review of Anticancer Therapy, 11(8), 1283–1294. Scholar
  202. 202.
    Mowers, E. E., Sharifi, M. N., & Macleod, K. F. (2017). Autophagy in cancer metastasis. Oncogene, 36(12), 1619–1630. Scholar
  203. 203.
    Puleston, D. J., & Simon, A. K. (2014). Autophagy in the immune system. Immunology, 141(1), 1–8. Scholar
  204. 204.
    Ojha, R., Bhattacharyya, S., & Singh, S. K. (2015). Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. Biores Open Access, 4(1), 97–108. Scholar
  205. 205.
    Lei, Y., Zhang, D., Yu, J., Dong, H., Zhang, J., & Yang, S. (2017). Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Letters, 393, 33–39. Scholar
  206. 206.
    Boya, P., Gonzalez-Polo, R. A., Poncet, D., Andreau, K., Vieira, H. L., Roumier, T., et al. (2003). Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 22(25), 3927–3936. Scholar
  207. 207.
    Seitz, C., Hugle, M., Cristofanon, S., Tchoghandjian, A., & Fulda, S. (2013). The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. International Journal of Cancer, 132(11), 2682–2693. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication March/2018

Authors and Affiliations

  1. 1.Experimental Neurosurgery, Neuroscience Center, Theodor-Stern-Kai 7Goethe University HospitalFrankfurt am MainGermany
  2. 2.School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.German Cancer Consortium (DKTK)Partner Site FrankfurtGermany

Personalised recommendations