Postsystolic shortening on echocardiography as a gateway to cardiac computed tomography in patients with suspected stable angina pectoris

  • Philip BraininEmail author
  • Flemming Javier Olsen
  • Mats Christian Højbjerg Lassen
  • Jan Bech
  • Brian Claggett
  • Thomas Fritz-Hansen
  • Fredrik Folke
  • Gunnar H. Gislason
  • Tor Biering-Sørensen
Original Paper


Postsystolic shortening (PSS) by speckle-tracking echocardiography (STE) is a marker of myocardial ischemia and may improve diagnostic strategy. We sought to evaluate if PSS is associated with the coronary artery calcium score (CACS) and stenosis by computed tomography angiography (CTA) in patients with suspected stable angina pectoris (SAP). We retrospectively studied 437 SAP patients (age 58 ± 11 years, 41% male) who underwent STE, evaluation of CACS and assessment of significant stenosis (≥ 50%) by CTA. The postsystolic index (PSI) was defined as follows: 100x([peak negative strain cardiac cycle − peak negative strain systole])/peak negative strain cardiac cycle. A wall had PSS if any segment within the wall had a PSI ≥ 20%. We defined categories for walls with PSS: 0, 1, 2 and ≥ 3, and CACS: 0, 1–100, 101–400 and > 400. Each additional wall with PSS was associated with a 43% relative increase in CACS (95%CI +9% to +87%, P = 0.010), while each 1% absolute increase in the PSI was associated with a 9% relative increase in CACS (95%CI +1% to +18%, P = 0.031). Walls with PSS (OR 1.81 per 1 wall increase, 95%CI 1.27–2.59, P = 0.001) and the PSI (OR 1.12 per 1% increase, 95%CI 1.04–1.21, P = 0.004) were associated with the occurrence of CACS > 400. Additionally, walls with PSS (OR 1.53 per 1 wall increase, 95%CI 1.21–1.93, P < 0.001) was a predictor of significant stenosis by CTA. PSS is associated with CACS and significant stenosis by CTA in patients with SAP and may aid in the selection of patients referred for cardiac computed tomography.


Stable angina Echocardiography Postsystolic shortening Coronary artery calcium 



PB received a research grant from the Gangsted Foundation and the Lundbeck Foundation. TBS was supported by the Fondsbørsvekselerer Henry Hansen og Hustrus Hovedlegat 2016. The sponsors had no role in the study design, data collection, data interpretation or writing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

10554_2019_1724_MOESM1_ESM.docx (5.9 mb)
Supplementary material 1 (DOCX 6041 kb)


  1. 1.
    Fernandez-Friera L, Garcia-Alvarez A, Guzman G, J. Garcia M (2012) Coronary CT and the coronary calcium score, the future of ED risk stratification? Curr Cardiol Rev 8:86–97. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 34:2949–3003. CrossRefPubMedGoogle Scholar
  3. 3.
    Hecht HS (2015) Coronary artery calcium scanning: past, present, and future. JACC Cardiovasc Imaging 8:579–596. CrossRefPubMedGoogle Scholar
  4. 4.
    Agatston AS, Janowitz FWR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast tomography. J Am Coll Cardiol 15:827–832. CrossRefPubMedGoogle Scholar
  5. 5.
    Hou ZH, Lu B, Gao Y et al (2012) Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. JACC Cardiovasc Imaging 5:990–999. CrossRefPubMedGoogle Scholar
  6. 6.
    Georgiou D, Budoff MJ, Kaufer E et al (2001) Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol 38:105–110CrossRefGoogle Scholar
  7. 7.
    Nabi F, Chang SM, Pratt CM et al (2010) Coronary artery calcium scoring in the emergency department: Identifying which patients with chest pain can be safely discharged home. Ann Emerg Med 56:220–229. CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann U, Bamberg F, Chae CU et al (2009) Coronary computed tomography angiography for early triage of patients with acute chest pain. The ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 53:1642–1650. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brainin P, Hoffmann S, Fritz-Hansen T et al (2018) Usefulness of postsystolic shortening to diagnose coronary artery disease and predict future cardiovascular events in stable angina pectoris. J Am Soc Echocardiogr 31:870.e3–879.e3. CrossRefGoogle Scholar
  10. 10.
    Onishi T, Uematsu M, Watanabe T et al (2010) Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: a practical approach. J Am Soc Echocardiogr 23:1103–1108. CrossRefPubMedGoogle Scholar
  11. 11.
    Celutkiene J, Sutherland GR, Laucevicius A et al (2004) Is post-systolic motion the optimal ultrasound parameter to detect induced ischaemia during dobutamine stress echocardiography? Eur Heart J 25:932–942. CrossRefPubMedGoogle Scholar
  12. 12.
    Amundsen BH, Helle-Valle T, Edvardsen T et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793. CrossRefPubMedGoogle Scholar
  13. 13.
    Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458. CrossRefPubMedGoogle Scholar
  14. 14.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1.e14–39.e14. CrossRefGoogle Scholar
  15. 15.
    Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28:183–193. CrossRefPubMedGoogle Scholar
  16. 16.
    Erbel R, Mhlenkamp S, Moebus S et al (2010) Coronary risk stratification, discrimination, and reclassification improvement based on quantification of Subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 56:1397–1406. CrossRefPubMedGoogle Scholar
  17. 17.
    Cuzick J (1985) A wilcoxon-type test for trend. Stat Med 4:87–90. CrossRefPubMedGoogle Scholar
  18. 18.
    Madhavan MV, Tarigopula M, Mintz GS et al (2014) Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol 63:1703–1714. CrossRefPubMedGoogle Scholar
  19. 19.
    Wang R, Liu X, Wang C et al (2017) Higher coronary artery calcification score is associated with adverse prognosis in patients with stable angina pectoris. J Thorac Dis 9:582–589. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eek C, Grenne B, Brunvand H et al (2011) Postsystolic shortening is a strong predictor of recovery of systolic function in patients with non-ST-elevation myocardial infarction. Eur J Echocardiogr 12:483–489. CrossRefPubMedGoogle Scholar
  21. 21.
    Voigt JU, Lindenmeier G, Exner B et al (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 16:415–423. CrossRefPubMedGoogle Scholar
  22. 22.
    Budoff MJ, Georgiou D, Brody A et al (1996) Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation 93:898–904. CrossRefPubMedGoogle Scholar
  23. 23.
    Kukulski T, Jamal F, Herbots L et al (2003) Identification of acutely ischemic myocardium using ultrasonic strain measurements: a clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 41:810–819. CrossRefPubMedGoogle Scholar
  24. 24.
    Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ et al (2017) Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population. Circ Cardiovasc Imaging 10:e005521. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Asanuma T, Nakatani S (2015) Myocardial ischaemia and post-systolic shortening. Heart. CrossRefPubMedGoogle Scholar
  26. 26.
    Skulstad H, Edvardsen T, Urheim S et al (2002) Postsystolic shortening in ischemic myocardium: active contraction or passive recoil? Circulation 106:718–724. CrossRefPubMedGoogle Scholar
  27. 27.
    Roberts ET, Horne A, Martin SS et al (2015) Cost-effectiveness of coronary artery calcium testing for coronary heart and cardiovascular disease risk prediction to guide statin allocation: the Multi-Ethnic Study of Atherosclerosis (MESA). PLoS ONE 10:1–20. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Philip Brainin
    • 1
    Email author
  • Flemming Javier Olsen
    • 1
  • Mats Christian Højbjerg Lassen
    • 1
  • Jan Bech
    • 1
  • Brian Claggett
    • 2
  • Thomas Fritz-Hansen
    • 1
  • Fredrik Folke
    • 1
  • Gunnar H. Gislason
    • 1
  • Tor Biering-Sørensen
    • 1
  1. 1.Cardiovascular Non-Invasive Imaging Research Laboratory, Department of CardiologyHerlev and Gentofte University HospitalCopenhagenDenmark
  2. 2.Department of Cardiovascular Medicine, Cardiac Imaging Core LaboratoryBrigham and Women’s HospitalBostonUSA

Personalised recommendations