Advertisement

Evaluation of computed tomography myocardial perfusion in women with angina and no obstructive coronary artery disease

  • Daria Frestad BechsgaardEmail author
  • Ida Gustafsson
  • Marie Mide Michelsen
  • Naja Dam Mygind
  • Kristoffer Flintholm Raft
  • Jesper James Linde
  • Klaus Fuglsang Kofoed
  • Fay Yu-Huei Lin
  • James K. Min
  • Eva Prescott
  • Jens Dahlgaard Hove
Original Paper
  • 20 Downloads

Abstract

Women with angina and no obstructive coronary artery disease (CAD) have worse cardiovascular prognosis than asymptomatic women. Limitation in myocardial perfusion caused by coronary microvascular dysfunction (CMD) is one of the proposed mechanisms contributing to the adverse prognosis. The aim of this study was to assess myocardial perfusion in symptomatic women with no obstructive CAD suspected for CMD compared with asymptomatic sex-matched controls using static CT perfusion (CTP). We performed a semi-quantitative assessment of the left ventricular myocardial perfusion and myocardial perfusion reserve (MPR), using static CTP with adenosine provocation, in 105 female patients with angina and no obstructive CAD (< 50% stenosis) and 33 sex-matched controls without a history of angina or ischemic heart disease.  Patients were on average 4 years older (p = 0.04) and had a higher burden of cardiovascular risk factors. While global perfusion during rest was comparable between the groups (age-adjusted p = 0.12), global perfusion during hyperemia was significantly reduced in patients compared with controls (163 ± 23 HU vs. 171 ± 25 HU; age-adjusted p = 0.023). The ability to increase myocardial perfusion during adenosine-induced vasodilation was significantly diminished in patients (MPR 148% vs. 158%; age-adjusted p < 0.001). This remained unchanged after adjustment for cardiovascular risk factors (p = 0.008). Women with angina and no obstructive CAD have reduced hyperemic myocardial perfusion and MPR compared with sex-matched controls. Impaired myocardial perfusion may be related to the presence of CMD in some of these women.

Keywords

Myocardial CT perfusion imaging Myocardial perfusion reserve Stress testing Angina pectoris Women 

Abbreviations

AD

Attenuation density

BMI

Body mass index

CAC

Coronary artery calcium

CAD

Coronary artery disease

CCTA

Coronary computed tomography angiography

CHD

Coronary heart disease

CMD

Coronary microvascular dysfunction

CT

Computed tomography

CTP

CT perfusion

DFB

Daria Frestad Bechsgaard

HU

Hounsfield units

IHD

Ischemic heart disease

JJL

Jesper James Linde

MPR

Myocardial perfusion reserve

LAD

Left anterior descending coronary artery

LV

Left ventricle

LCX

Left circumflex coronary artery

PET

Positron emission tomography

RCA

Right coronary artery

TPR

Transmural perfusion ratio

Notes

Acknowledgements

This work was supported by the Danish Heart, Arvid Nilssons Foundation and Hvidovre Hospital Research Council. The Authors would like to thank the Copenhagen City Heart study, Departments of Cardiology and Radiology, Hvidovre University Hospital, and Department of Cardiology, Bispebjerg University Hospital, for their collaboration on this project. We thank chief radiologist Dennis Møller and radiologists Tina Berland Larsen, Anja Nielsen, Linn Haraldseid, and the nursing head of the outpatient department of Cardiology Sussie Foghmar for their assistance in data acquisition. Lastly, we want to express our deepest gratitude to the women participating in the iPOWER study for their time and willingness to contribute to the research.

Compliance with ethical standards

Conflict of interest

All the authors declared that they no conflict of interest.

References

  1. 1.
    Patel MR, Peterson ED, Dai D et al (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 362:886–895.  https://doi.org/10.1056/NEJMoa0907272 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bairey Merz CN, Shaw LJ, Reis SE et al (2006) Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular cor. J Am Coll Cardiol 47:S21–S29.  https://doi.org/10.1016/j.jacc.2004.12.084 CrossRefPubMedGoogle Scholar
  3. 3.
    Sharaf B, Wood T, Shaw L et al (2013) Adverse outcomes among women presenting with signs and symptoms of ischemia and no obstructive coronary artery disease: findings from the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) angiographic core lab. Am Heart J 166:134–141.  https://doi.org/10.1016/j.ahj.2013.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jespersen L, Abildstrom SZ, Hvelplund A et al (2014) Burden of hospital admission and repeat angiography in angina pectoris patients with and without coronary artery disease: a registry-based cohort study. PLoS ONE 9:e93170.  https://doi.org/10.1371/journal.pone.0093170 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gulati M, Shaw LJ, Bairey Merz CN (2012) Myocardial ischemia in women: lessons from the NHLBI WISE study. Clin Cardiol 35:141–148.  https://doi.org/10.1002/clc.21966 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen C, Wei J, AlBadri A et al (2017) Coronary microvascular dysfunction - epidemiology, pathogenesis, prognosis, diagnosis, risk factors and therapy. Circ J 81:3–11.  https://doi.org/10.1253/circj.CJ-16-1002 CrossRefGoogle Scholar
  7. 7.
    Brainin P, Frestad D, Prescott E (2018) The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: a systematic review and meta-analysis. Int J Cardiol 254:1–9.  https://doi.org/10.1016/j.ijcard.2017.10.052 CrossRefPubMedGoogle Scholar
  8. 8.
    Michelsen MM, Mygind ND, Frestad D, Prescott E (2017) Women with stable angina pectoris and no obstructive coronary artery disease: closer to a diagnosis. Eur Cardiol Rev 12:14–19.  https://doi.org/10.15420/ecr.2016:33:2 CrossRefGoogle Scholar
  9. 9.
    Knuuti J, Wijns W, Saraste A et al (2019) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehz425 CrossRefPubMedGoogle Scholar
  10. 10.
    Bechsgaard DF, Gustafsson I, Linde JJ et al (2019) Myocardial perfusion assessed with cardiac computed tomography in women without coronary heart disease. Clin Physiol Funct Imaging 39:65–77.  https://doi.org/10.1111/cpf.12542 CrossRefPubMedGoogle Scholar
  11. 11.
    Mygind ND, Michelsen MM, Pena A et al (2016) Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. J Am Heart Assoc 5:e003064.  https://doi.org/10.1161/JAHA.115.003064 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aguib Y, Al Suwaidi J (2015) The copenhagen city heart study (Østerbroundersøgelsen). Glob Cardiol Sci Pract 2015:33.  https://doi.org/10.5339/gcsp.2015.33 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Michelsen MM, Mygind ND, Pena A et al (2017) Transthoracic Doppler echocardiography compared with positron emission tomography for assessment of coronary microvascular dysfunction: the iPOWER study. Int J Cardiol 228:435–443.  https://doi.org/10.1016/j.ijcard.2016.11.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Tobias Kühl J, Linde JJ, Fuchs A et al (2012) Patterns of myocardial perfusion in humans evaluated with contrast-enhanced 320 multidetector computed tomography. Int J Cardiovasc Imaging 28:1739–1747.  https://doi.org/10.1007/s10554-011-9986-z CrossRefPubMedGoogle Scholar
  15. 15.
    Bischoff B, Bamberg F, Marcus R et al (2013) Optimal timing for first-pass stress CT myocardial perfusion imaging. Int J Cardiovasc Imaging 29:435–442.  https://doi.org/10.1007/s10554-012-0080-y CrossRefPubMedGoogle Scholar
  16. 16.
    Kim M, Lee JM, Yoon JH et al (2014) Adaptive iterative dose reduction algorithm in CT: effect on image quality compared with filtered back projection in body phantoms of different sizes. Korean J Radiol 15:195–204.  https://doi.org/10.3348/kjr.2014.15.2.195 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Trattner S, Halliburton S, Thompson CM et al (2018) Cardiac-specific conversion factors to estimate radiation effective dose from dose-length product in computed tomography. JACC Cardiovasc Imaging 11:64–74.  https://doi.org/10.1016/j.jcmg.2017.06.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Wu F-Z, Wu M-T (2015) 2014 SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 9:e3.  https://doi.org/10.1016/j.jcct.2015.01.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18:539–542PubMedGoogle Scholar
  20. 20.
    Danad I, Uusitalo V, Kero T et al (2014) Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 64:1464–1475.  https://doi.org/10.1016/j.jacc.2014.05.069 CrossRefPubMedGoogle Scholar
  21. 21.
    Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG (2001) Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 50:151–161CrossRefPubMedGoogle Scholar
  22. 22.
    Czernin J, Müller P, Chan S et al (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69.  https://doi.org/10.1161/01.cir.88.1.62 CrossRefPubMedGoogle Scholar
  23. 23.
    Kaufmann PA, Namdar M, Matthew F et al (2005) Novel doppler assessment of intracoronary volumetric flow reserve: validation against PET in patients with or without flow-dependent vasodilation. J Nucl Med 46:1272–1277PubMedGoogle Scholar
  24. 24.
    Geltman EM, Henes CG, Senneff MJ et al (1990) Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 16:586–595CrossRefPubMedGoogle Scholar
  25. 25.
    Scholtens AM, Tio RA, Willemsen A et al (2011) Myocardial perfusion reserve compared with peripheral perfusion reserve: a [13 N]ammonia PET study. J Nucl Cardiol 18:238–246.  https://doi.org/10.1007/s12350-011-9339-2 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Graf S, Khorsand A, Gwechenberger M et al (2007) Typical chest pain and normal coronary angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. J Nucl Med 48:175–181PubMedGoogle Scholar
  27. 27.
    Kaufmann PA, Camici PG (2005) Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 46:75–88PubMedGoogle Scholar
  28. 28.
    Panting JR, Gatehouse PD, Yang G-Z et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953.  https://doi.org/10.1056/NEJMoa012369 CrossRefPubMedGoogle Scholar
  29. 29.
    Thomson LEJ, Wei J, Agarwal M et al (2015) Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: a national heart, lung, and blood institute-sponsored study from the women’s ischemia syndrome evaluation. Circ Cardiovasc Imaging 8:e002481.  https://doi.org/10.1161/CIRCIMAGING.114.002481 CrossRefPubMedGoogle Scholar
  30. 30.
    Shufelt CL, Thomson LEJ, Goykhman P et al (2013) Cardiac magnetic resonance imaging myocardial perfusion reserve index assessment in women with microvascular coronary dysfunction and reference controls. Cardiovasc Diagn Ther 3:153–160.  https://doi.org/10.3978/j.issn.2223-3652.2013.08.02 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Reis SE, Holubkov R, Lee JS et al (1999) Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease. Results from the pilot phase of the Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol 33:1469–1475CrossRefPubMedGoogle Scholar
  32. 32.
    Chauhan A, Mullins PA, Taylor G et al (1997) Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J 18:60–68CrossRefPubMedGoogle Scholar
  33. 33.
    Linde JJ, Kühl JT, Hove JD et al (2015) Transmural myocardial perfusion gradients in relation to coronary artery stenoses severity assessed by cardiac multidetector computed tomography. Int J Cardiovasc Imaging 31:171–180.  https://doi.org/10.1007/s10554-014-0530-9 CrossRefPubMedGoogle Scholar
  34. 34.
    Algranati D, Kassab GS, Lanir Y (2011) Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300:H1090–H1100.  https://doi.org/10.1152/ajpheart.00473.2010 CrossRefPubMedGoogle Scholar
  35. 35.
    Driessen RS, Stuijfzand WJ, Raijmakers PG et al (2018) Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol 71:499–509.  https://doi.org/10.1016/j.jacc.2017.11.054 CrossRefPubMedGoogle Scholar
  36. 36.
    Imai S, Kondo T, Stone GW et al (2019) Abnormal fractional flow reserve in nonobstructive coronary artery disease. Circ Cardiovasc Interv 12:e006961.  https://doi.org/10.1161/CIRCINTERVENTIONS.118.006961 CrossRefPubMedGoogle Scholar
  37. 37.
    Marini C, Seitun S, Zawaideh C et al (2017) Comparison of coronary flow reserve estimated by dynamic radionuclide SPECT and multi-detector x-ray CT. J Nucl Cardiol 24:1712–1721.  https://doi.org/10.1007/s12350-016-0492-5 CrossRefPubMedGoogle Scholar
  38. 38.
    De Bruyne B, Hersbach F, Pijls NHJ et al (2001) Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 104:2401–2406.  https://doi.org/10.1161/hc4501.099316 CrossRefPubMedGoogle Scholar
  39. 39.
    Kühl JT, George RT, Mehra VC et al (2016) Endocardial-epicardial distribution of myocardial perfusion reserve assessed by multidetector computed tomography in symptomatic patients without significant coronary artery disease: insights from the CORE320 multicentre study. Eur Heart J Cardiovasc Imaging 17:779–787.  https://doi.org/10.1093/ehjci/jev206 CrossRefPubMedGoogle Scholar
  40. 40.
    Sara JD, Widmer RJ, Matsuzawa Y et al (2015) Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv 8:1445–1453.  https://doi.org/10.1016/j.jcin.2015.06.017 CrossRefPubMedGoogle Scholar
  41. 41.
    Murthy VL, Naya M, Taqueti VR et al (2014) Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 129:2518–2527.  https://doi.org/10.1161/CIRCULATIONAHA.113.008507 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rossi A, Merkus D, Klotz E et al (2014) Stress myocardial perfusion: imaging with multidetector CT. Radiology 270:25–46.  https://doi.org/10.1148/radiol.13112739 CrossRefPubMedGoogle Scholar
  43. 43.
    Case JA, deKemp RA, Slomka PJ et al (2017) Status of cardiovascular PET radiation exposure and strategies for reduction: an information statement from the cardiovascular PET task force. J Nucl Cardiol 24:1427–1439.  https://doi.org/10.1007/s12350-017-0897-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Al Jaroudi W, Iskandrian AE (2009) Regadenoson: a new myocardial stress agent. J Am Coll Cardiol 54:1123–1130.  https://doi.org/10.1016/j.jacc.2009.04.089 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Daria Frestad Bechsgaard
    • 1
    Email author
  • Ida Gustafsson
    • 1
  • Marie Mide Michelsen
    • 2
  • Naja Dam Mygind
    • 3
  • Kristoffer Flintholm Raft
    • 2
  • Jesper James Linde
    • 3
  • Klaus Fuglsang Kofoed
    • 3
  • Fay Yu-Huei Lin
    • 4
  • James K. Min
    • 4
  • Eva Prescott
    • 2
  • Jens Dahlgaard Hove
    • 1
  1. 1.Department of Cardiology, Hvidovre University HospitalUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Cardiology, Bispebjerg University HospitalUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Cardiology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  4. 4.Dalio Institute of Cardiovascular Imaging, Department of RadiologyNew York-Presbyterian Hospital and Weill Cornell MedicineNew YorkUSA

Personalised recommendations