Advertisement

The International Journal of Cardiovascular Imaging

, Volume 35, Issue 11, pp 1963–1969 | Cite as

Applicability of quantitative flow ratio for rapid evaluation of intermediate coronary stenosis: comparison with instantaneous wave-free ratio in clinical practice

  • Masahiro Watarai
  • Masato OtsukaEmail author
  • Kyoichiro Yazaki
  • Yusuke Inagaki
  • Mitsuru Kahata
  • Asako Kumagai
  • Koji Inoue
  • Hiroshi Koganei
  • Kenji Enta
  • Yasuhiro Ishii
Original Paper
  • 107 Downloads

Abstract

Quantitative flow ratio (QFR) is an image-based fractional flow reserve (FFR) computed by three-dimensional quantitative coronary angiography and estimated flow velocity. Several studies have reported that QFR was rapidly computed within approximately 5 min and had a good diagnostic performance as compared with FFR. However, studies comparing QFR with instantaneous wave-free ratio (iFR) as an index with a prognostic value comparable to that of FFR are limited. Thus, we investigated the applicability of QFR with respect to iFR, both being easy-to-measure indices not requiring pharmacological hyperaemic induction. We computed QFR in prospectively enrolled 150 coronary lesions (including 50 lesions for onsite QFR analysis) in consecutive patients with intermediate stenosis evaluated by iFR. The correlation and diagnostic performance of QFR were compared using iFR as a reference. The mean QFR and iFR were 0.81 ± 0.12 and 0.89 ± 0.11, respectively. QFR and iFR exhibited a good correlation in all subjects (R = 0.70, p < 0.0001) and the onsite-analysed vessels (R = 0.74, p < 0.0001). In the receiver-operating characteristics analysis, the area under the curve of QFR predicting iFR ≤ 0.89 was 0.91. Applying the cut-off value of QFR ≤ 0.80 and iFR ≤ 0.89, the sensitivity, specificity, positive and negative predictive values were 85%, 83%, 72%, and 91%, respectively, in all subjects, and 82%, 82%, 78%, and 85%, respectively, in the onsite-analysed vessels. QFR including onsite analysis demonstrated a good correlation with iFR and a diagnostic performance comparable to that of iFR in consecutive patients with intermediate coronary stenosis, suggesting its potential as a rapidly derived index for evaluating myocardial ischaemia in clinical settings.

Keywords

Quantitative flow ratio Coronary angiography Instantaneous wave-free ratio Fractional flow reserve 

Abbreviations

3D

3-Dimensional

DS%

Percent diameter stenosis

FFR

Fractional flow reserve

FFR-CT

Computed tomography-derived FFR

iFR

Instantaneous wave-free ratio

MLD

Minimum lumen diameter

QCA

Quantitative coronary angiography

QFR

Quantitative flow ratio

TIMI

Thrombolysis in myocardial infarction

Notes

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the institutional ethical review board. All patients provided written informed consent before enrolment.

References

  1. 1.
    Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, Stella PR, Boersma E, Bartunek J, Koolen JJ, Wijns W (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 103(24):2928–2934CrossRefGoogle Scholar
  2. 2.
    Kawase Y, Matsuo H, Akasaka T, Shiono Y, Tanaka N, Amano T, Kozuma K, Nakamura M, Yokoi H, Kobayashi Y, Ikari Y (2019) Clinical use of physiological lesion assessment using pressure guidewires: an expert consensus document of the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 34(1):85–96.  https://doi.org/10.1007/s12928-018-0559-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van't Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224.  https://doi.org/10.1056/NEJMoa0807611 CrossRefPubMedGoogle Scholar
  4. 4.
    Fearon WF, Nishi T, De Bruyne B, Boothroyd DB, Barbato E, Tonino P, Jüni P, Pijls NHJ, Hlatky MA, FAME 2 Trial Investigators (2018) Clinical outcomes and cost-effectiveness of fractional flow reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: three-year follow-Up of the FAME 2 trial (fractional flow reserve versus angiography for multivessel evaluation). Circulation 137(5):480–487.  https://doi.org/10.1161/CIRCULATIONAHA.117.031907 CrossRefPubMedGoogle Scholar
  5. 5.
    Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, Bhindi R, Lehman SJ, Walters D, Sapontis J, Janssens L, Vrints CJ, Khashaba A, Laine M, Van Belle E, Krackhardt F, Bojara W, Going O, Härle T, Indolfi C, Niccoli G, Ribichini F, Tanaka N, Yokoi H, Takashima H, Kikuta Y, Erglis A, Vinhas H, Canas Silva P, Baptista SB, Alghamdi A, Hellig F, Koo BK, Nam CW, Shin ES, Doh JH, Brugaletta S, Alegria-Barrero E, Meuwissen M, Piek JJ, van Royen N, Sezer M, Di Mario C, Gerber RT, Malik IS, Sharp ASP, Talwar S, Tang K, Samady H, Altman J, Seto AH, Singh J, Jeremias A, Matsuo H, Kharbanda RK, Patel MR, Serruys P, Escaned J (2017) Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 376(19):1824–1834.  https://doi.org/10.1056/NEJMoa1700445 CrossRefPubMedGoogle Scholar
  6. 6.
    Götberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, Olsson SE, Öhagen P, Olsson H, Omerovic E, Calais F, Lindroos P, Maeng M, Tödt T, Venetsanos D, James SK, Kåregren A, Nilsson M, iFR-SWEDEHEART Investigators (2017) Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 376(19):1813–1823.  https://doi.org/10.1056/NEJMoa1616540 CrossRefPubMedGoogle Scholar
  7. 7.
    Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JH (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv 7(7):768–777.  https://doi.org/10.1016/j.jcin.2014.03.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A, Barbato E, van der Heijden LC, Reiber JH, Holm NR, Wijns W, FAVOR Pilot Trial Study Group (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv 9(19):2024–2035.  https://doi.org/10.1016/j.jcin.2016.07.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Yazaki K, Otsuka M, Kataoka S, Kahata M, Kumagai A, Inoue K, Koganei H, Enta K, Ishii Y (2017) Applicability of 3-dimensional quantitative coronary angiography- derived computed fractional flow reserve for intermediate coronary stenosis. Circ J 81(7):988–992.  https://doi.org/10.1016/j.jccase.2017.06.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, Terada K, Katayama Y, Taruya A, Shimamura K, Shiono Y, Tanaka A, Hozumi T, Akasaka T (2018) Quantitative flow ratio and instantaneous wave-free ratio for the assessment of the functional severity of intermediate coronary artery stenosis. Coron Artery Dis 29(8):611–617.  https://doi.org/10.1097/MCA.0000000000000650 CrossRefPubMedGoogle Scholar
  11. 11.
    Westra J, Tu S, Winther S, Nissen L, Vestergaard MB, Andersen BK, Holck EN, Fox Maule C, Johansen JK, Andreasen LN, Simonsen JK, Zhang Y, Kristensen SD, Maeng M, Kaltoft A, Terkelsen CJ, Krusell LR, Jakobsen L, Reiber JHC, Lassen JF, Bøttcher M, Bøtker HE, Christiansen EH, Holm NR (2018) Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (wire-free functional imaging II). Circ Cardiovasc Imaging 11(3):e007107.  https://doi.org/10.1161/CIRCIMAGING.117.007107 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Collet C, Onuma Y, Sonck J, Asano T, Vandeloo B, Kornowski R, Tu S, Westra J, Holm NR, Xu B, de Winter RJ, Tijssen JG, Miyazaki Y, Katagiri Y, Tenekecioglu E, Modolo R, Chichareon P, Cosyns B, Schoors D, Roosens B, Lochy S, Argacha JF, van Rosendael A, Bax J, Reiber JHC, Escaned J, De Bruyne B, Wijns W, Serruys PW (2018) Diagnostic performance of angiography-derived fractional flow reserve: a systematic review and Bayesian meta-analysis. Eur Heart J 39(35):3314–3321.  https://doi.org/10.1093/eurheartj/ehy445 CrossRefPubMedGoogle Scholar
  13. 13.
    Hwang D, Choi KH, Lee JM, Mejía-Rentería H, Kim J, Park J, Rhee TM, Jeon KH, Lee HJ, Kim HK, Park TK, Yang JH, Song YB, Shin ES, Nam CW, Kwak JJ, Doh JH, Hahn JY, Choi JH, Choi SH, Escaned J, Koo BK, Gwon HC (2019) Diagnostic agreement of quantitative flow ratio with fractional flow reserve and instantaneous wave-free ratio. J Am Heart Assoc 8(8):e011605.  https://doi.org/10.1161/JAHA.118.011605 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Westra J, Tu S, Campo G, Qiao S, Matsuo H, Qu X, Koltowski L, Chang Y, Liu T, Yang J, Andersen BK, Eftekhari A, Christiansen EH, Escaned J, Wijns W, Xu B, Holm NR (2019) Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: an individual patient-data meta-analysis. Catheter Cardiovasc Interv.  https://doi.org/10.1002/ccd.28283 CrossRefPubMedGoogle Scholar
  15. 15.
    van Rosendael AR, Koning G, Dimitriu-Leen AC, Smit JM, Montero-Cabezas JM, van der Kley F, Jukema JW, Reiber JHC, Bax JJ, Scholte AJHA (2017) Accuracy and reproducibility of fast fractional flow reserve computation from invasive coronary angiography. Int J Cardiovasc Imaging 33(9):1305–1312.  https://doi.org/10.1007/s10554-017-1190-3 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Westra J, Andersen BK, Campo G, Matsuo H, Koltowski L, Eftekhari A, Liu T, Di Serafino L, Di Girolamo D, Escaned J, Nef H, Naber C, Barbierato M, Tu S, Neghabat O, Madsen M, Tebaldi M, Tanigaki T, Kochman J, Somi S, Esposito G, Mercone G, Mejia-Renteria H, Ronco F, Bøtker HE, Wijns W, Christiansen EH, Holm NR (2018) Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan study. J Am Heart Assoc 7(14):e009603.  https://doi.org/10.1161/JAHA.118.009603 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, Guo L, Sun Z, Li Z, Tian F, Fang W, Chen J, Li W, Guan C, Holm NR, Wijns W, Hu S (2017) Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol 70(25):3077–3087.  https://doi.org/10.1016/j.jacc.2017.10.035 CrossRefPubMedGoogle Scholar
  18. 18.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58(19):1989–1997.  https://doi.org/10.1016/j.jacc.2011.06.066 CrossRefPubMedGoogle Scholar
  19. 19.
    Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, De Bruyne B, Investigators PLATFORM (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J 36(47):3359–3367.  https://doi.org/10.1093/eurheartj/ehv444 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fairbairn TA, Nieman K, Akasaka T, Nørgaard BL, Berman DS, Raff G, Hurwitz-Koweek LM, Pontone G, Kawasaki T, Sand NP, Jensen JM, Amano T, Poon M, Øvrehus K, Sonck J, Rabbat M, Mullen S, De Bruyne B, Rogers C, Matsuo H, Bax JJ, Leipsic J, Patel MR (2018) Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J 39(41):3701–3711.  https://doi.org/10.1093/eurheartj/ehy530 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spitaleri G, Tebaldi M, Biscaglia S, Westra J, Brugaletta S, Erriquez A, Passarini G, Brieda A, Leone AM, Picchi A, Ielasi A, Girolamo DD, Trani C, Ferrari R, Reiber JHC, Valgimigli M, Sabatè M, Campo G (2018) Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization in patients with ST-segment-elevation myocardial infarction and multivessel disease. Circ Cardiovasc Interv. 11(2):e006023.  https://doi.org/10.1161/CIRCINTERVENTIONS.117.006023 CrossRefPubMedGoogle Scholar
  22. 22.
    Asano T, Katagiri Y, Chang CC, Kogame N, Chichareon P, Takahashi K, Modolo R, Tenekecioglu E, Collet C, Jonker H, Appleby C, Zaman A, van Mieghem N, Uren N, Zueco J, Piek JJ, Reiber JHC, Farooq V, Escaned J, Banning AP, Serruys PW, Onuma Y (2019) Angiography-derived fractional flow reserve in the SYNTAX II trial: Feasibility, diagnostic performance of quantitative flow ratio, and clinical prognostic value of functional SYNTAX score derived from quantitative flow ratio in patients with 3-vessel disease. JACC Cardiovasc Interv 12(3):259–270.  https://doi.org/10.1016/j.jcin.2018.09.023 CrossRefPubMedGoogle Scholar
  23. 23.
    Cook CM, Jeremias A, Petraco R, Sen S, Nijjer S, Shun-Shin MJ, Ahmad Y, de Waard G, van de Hoef T, Echavarria-Pinto M, van Lavieren M, Al Lamee R, Kikuta Y, Shiono Y, Buch A, Meuwissen M, Danad I, Knaapen P, Maehara A, Koo BK, Mintz GS, Escaned J, Stone GW, Francis DP, Mayet J, Piek JJ, van Royen N, Davies JE (2017) Discordance in angiographically intermediate coronary stenoses: An analysis using doppler-derived coronary flow measurements. JACC Cardiovasc Interv 10(24):2514–2524.  https://doi.org/10.1016/j.jcin.2017.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mejía-Rentería H, Lee JM, Lauri F, van der Hoeven NW, de Waard GA, Macaya F, Pérez-Vizcayno MJ, Gonzalo N, Jiménez-Quevedo P, Nombela-Franco L, Salinas P, Núñez-Gil I, Del Trigo M, Goto S, Lee HJ, Liontou C, Fernández-Ortiz A, Macaya C, van Royen N, Koo BK, Escaned J (2018) Influence of microcirculatory dysfunction on angiography-based functional assessment of coronary stenoses. JACC Cardiovasc Interv 11(8):741–753.  https://doi.org/10.1016/j.jcin.2018.02.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Emori H, Kubo T, Kameyama T, Ino Y, Matsuo Y, Kitabata H, Terada K, Katayama Y, Aoki H, Taruya A, Shimamura K, Ota S, Tanaka A, Hozumi T, Akasaka T (2018) Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction. Circ J 82(3):807–814.  https://doi.org/10.1253/circj.CJ-17-0949 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Masahiro Watarai
    • 1
  • Masato Otsuka
    • 1
    Email author
  • Kyoichiro Yazaki
    • 1
  • Yusuke Inagaki
    • 1
  • Mitsuru Kahata
    • 1
  • Asako Kumagai
    • 1
  • Koji Inoue
    • 1
  • Hiroshi Koganei
    • 1
  • Kenji Enta
    • 1
  • Yasuhiro Ishii
    • 1
  1. 1.Department of Cardiology, Cardiovascular CenterOgikubo HospitalTokyoJapan

Personalised recommendations