Image quality and radiation dose of ECG-triggered High-Pitch Dual-Source cardiac computed tomography angiography in children for the evaluation of central vascular stents

  • Christian A. BarreraEmail author
  • Hansel J. Otero
  • Ammie M. White
  • David Saul
  • David M. Biko
Original Paper


Assess image quality and radiation dose of ECG-triggered High-Pitch Dual-Source CTA for the evaluation central vascular stents in children. We included all children ≤ 21 years old with one or more central vascular stents and available prospective ECG-triggered High-Pitch Dual-Source CTA performed at our institution between January 2015 and August 2017. Demographic and scanner information was retrieved. Two board-certified pediatric radiologists blinded to the clinical data, independently reviewed and scored each case using a four-point quality score. Scores 1, 2 and 3 were considered of diagnostic image quality. Inter-observer agreement and non-parametric test were used. 18 patients (10 girls, 8 boys) with a mean age of 9.47 ± 7.38 years (mean ± SD) met inclusion criteria. Thirty-two central vascular stents were evaluated. Mean quality score was 2.07 ± 0.94 with 12.5% (4/32) of the cases classified as unevaluable. Interobserver agreement was excellent (k = 0.86). There is no significant difference between quality score and stent location (p = 0.07). There is a significant difference with stent material as all non-diagnostic scores were only seen in covered stents made of platinum-iridium (p < 0.001). There was no association between image quality and age, height, weight, BSA, heart rate, radiation dose or stent lumen size (p > 0.05). ECG-triggered high-pitch spiral DS-CTA offers appropriate image quality for assessment of central vascular stents in children.


Children Cardiac CT Stent Dual-source CT High Pitch ECG-triggered 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

The need for written informed consent was waived in view of the retrospective nature of the research.

Statement of human rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki of 1964, as revised in 2008


  1. 1.
    Meot M, Lefort B, El Arid JM, Soule N, Lothion-Boulanger J, Lengelle F, Chantepie A, Neville P (2017) Intraoperative stenting of pulmonary artery stenosis in children with congenital heart disease. Ann Thorac Surg 104(1):190–196. CrossRefGoogle Scholar
  2. 2.
    Temel MT, Coskun ME, Baspinar O, Demiryurek AT (2017) Prevalence and characteristics of coronary artery anomalies in children with congenital heart disease diagnosed with coronary angiography. Turk Kardiyoloji Dernegi arsivi: Turk Kardiyoloji Derneginin yayin organidir 45(6):527–532. Google Scholar
  3. 3.
    Lynch W, Boekholdt SM, Hazekamp MG, de Winter RJ, Koolbergen DR (2015) Hybrid branch pulmonary artery stent placement in adults with congenital heart disease. Interact Cardiovasc Thorac Surg 20(4):499–503. CrossRefGoogle Scholar
  4. 4.
    Agrawal H, Alkashkari W, Kenny D (2017) Evolution of hybrid interventions for congenital heart disease. Expert Rev Cardiovasc Ther 15(4):257–266. CrossRefGoogle Scholar
  5. 5.
    O’Laughlin MP, Perry SB, Lock JE, Mullins CE (1991) Use of endovascular stents in congenital heart disease. Circulation 83(6):1923–1939CrossRefGoogle Scholar
  6. 6.
    Boe BA, Zampi JD, Schumacher KR, Yu S, Armstrong AK (2016) The use and outcomes of small, medium and large premounted stents in pediatric and congenital heart disease. Pediatric Cardiol 37(8):1525–1533. CrossRefGoogle Scholar
  7. 7.
    Eichhorn JG, Long FR, Hill SL, O’Donovan J, Chisolm JL, Fernandez SA, Cheatham JP (2006) Assessment of in-stent stenosis in small children with congenital heart disease using multi-detector computed tomography: a validation study. Catheter Cardiovasc Interv 68(1):11–20. CrossRefGoogle Scholar
  8. 8.
    Ehara M, Kawai M, Surmely JF, Matsubara T, Terashima M, Tsuchikane E, Kinoshita Y, Ito T, Takeda Y, Nasu K, Tanaka N, Murata A, Fujita H, Sato K, Kodama A, Katoh O, Suzuki T (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49(9):951–959. CrossRefGoogle Scholar
  9. 9.
    Gorenoi V, Schonermark MP, Hagen A (2012) CT coronary angiography vs. invasive coronary angiography in CHD. GMS Health Technol Assess 8:Doc02. Google Scholar
  10. 10.
    Eichhorn JG, Long FR, Jourdan C, Heverhagen JT, Hill SL, Raman SV, Cheatham JP (2008) Usefulness of multidetector CT imaging to assess vascular stents in children with congenital heart disease: an in vivo and in vitro study. Catheter Cardiovasc Interv 72(4):544–551. CrossRefGoogle Scholar
  11. 11.
    Sun Z, Ng KH, Sarji SA (2010) Is utilisation of computed tomography justified in clinical practice? Part IV: applications of paediatric computed tomography. Singapore Med J 51(6):457–463Google Scholar
  12. 12.
    Brody AS, Frush DP, Huda W, Brent RL (2007) Radiation risk to children from computed tomography. Pediatrics 120(3):677–682. CrossRefGoogle Scholar
  13. 13.
    Shah NB, Platt SL (2008) ALARA: is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children. Curr Opin Pediatr 20(3):243–247. CrossRefGoogle Scholar
  14. 14.
    Mahnken AH (2012) CT imaging of coronary stents: past, present, and future. ISRN Cardiol 2012:139823. CrossRefGoogle Scholar
  15. 15.
    Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68(3):362–368. CrossRefGoogle Scholar
  16. 16.
    Booij R, Dijkshoorn ML, van Straten M, du Plessis FA, Budde RP, Moelker A, Krestin GP, Ouhlous M (2016) Cardiovascular imaging in pediatric patients using dual source CT. J Cardiovasc Comput Tomogr 10(1):13–21. CrossRefGoogle Scholar
  17. 17.
    Li T, Zhao S, Liu J, Yang L, Huang Z, Li J, Luo C, Li X (2017) Feasibility of high-pitch spiral dual-source CT angiography in children with complex congenital heart disease compared to retrospective-gated spiral acquisition. Clin Radiol 72(10):864–870. CrossRefGoogle Scholar
  18. 18.
    Nie P, Wang X, Cheng Z, Ji X, Duan Y, Chen J (2012) Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease. Eur Radiol 22(10):2057–2066. CrossRefGoogle Scholar
  19. 19.
    American Association of Physicists in Medicine (2008) The measure, reporting and management of radiation dose in CT. Report # 96 of AAPM task Group 23 of the Diagnostic Imaging Council CT CommitteeGoogle Scholar
  20. 20.
    Layritz C, Schmid J, Achenbach S, Ulzheimer S, Wuest W, May M, Ropers D, Klinghammer L, Daniel WG, Pflederer T, Lell M (2014) Accuracy of prospectively ECG-triggered very low-dose coronary dual-source CT angiography using iterative reconstruction for the detection of coronary artery stenosis: comparison with invasive catheterization. Eur Heart J Cardiovasc Imag 15(11):1238–1245. CrossRefGoogle Scholar
  21. 21.
    Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imag 24(5):535–546. CrossRefGoogle Scholar
  22. 22.
    Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med 37(5):360–363Google Scholar
  23. 23.
    Nordmeyer J, Gaudin R, Tann OR, Lurz PC, Bonhoeffer P, Taylor AM, Muthurangu V (2010) MRI may be sufficient for noninvasive assessment of great vessel stents: an in vitro comparison of MRI, CT, and conventional angiography. Am J Roentgenol 195(4):865–871. CrossRefGoogle Scholar
  24. 24.
    den Harder AM, Sucha D, van Hamersvelt RW, Budde RP, de Jong PA, Schilham AM, Bos C, Breur JM, Leiner T (2017) Imaging of pediatric great vessel stents: computed tomography or magnetic resonance imaging? PLoS One 12(1):e0171138. CrossRefGoogle Scholar
  25. 25.
    Achenbach S, Marwan M, Ropers D, Schepis T, Pflederer T, Anders K, Kuettner A, Daniel WG, Uder M, Lell MM (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31(3):340–346. CrossRefGoogle Scholar
  26. 26.
    Kanie Y, Sato S, Tada A, Kanazawa S (2017) Image Quality of coronary arteries on non-electrocardiography-gated High-Pitch Dual-Source computed tomography in children with congenital heart disease. Pediatric Cardiol. Google Scholar
  27. 27.
    Liu Y, Li J, Zhao H, Jia Y, Ren J, Xu J, Hao Y, Zheng M (2016) Image quality and radiation dose of dual-source CT cardiac angiography using prospective ECG-triggering technique in pediatric patients with congenital heart disease. J Cardiothorac Surg 11:47. CrossRefGoogle Scholar
  28. 28.
    Zhao L, Zhang Z, Fan Z, Yang L, Du J (2011) Prospective versus retrospective ECG gating for dual source CT of the coronary stent: comparison of image quality, accuracy, and radiation dose. Eur J Radiol 77(3):436–442. CrossRefGoogle Scholar
  29. 29.
    Rengier F, Geisbusch P, Vosshenrich R, Muller-Eschner M, Karmonik C, Schoenhagen P, von Tengg-Kobligk H, Partovi S (2013) State-of-the-art aortic imaging: part I - fundamentals and perspectives of CT and MRI. VASA Zeitschrift fur Gefasskrankheiten 42(6):395–412. CrossRefGoogle Scholar
  30. 30.
    Rinaudo A, D’Ancona G, Baglini R, Amaducci A, Follis F, Pilato M, Pasta S (2015) Computational fluid dynamics simulation to evaluate aortic coarctation gradient with contrast-enhanced CT. Comput Methods Biomech Biomed Eng 18(10):1066–1071. CrossRefGoogle Scholar
  31. 31.
    Marrocco-Trischitta MM, van Bakel TM, Romarowski RM, de Beaufort HW, Conti M, van Herwaarden JA, Moll FL, Auricchio F, Trimarchi S (2018) The modified arch landing areas nomenclature (MALAN) improves prediction of stent graft displacement forces: proof of concept by computational fluid dynamics modelling. Eur J Vasc Endovasc Surg 55(4):584–592. CrossRefGoogle Scholar
  32. 32.
    Karmonik C, Muller-Eschner M, Partovi S, Geisbusch P, Ganten MK, Bismuth J, Davies MG, Bockler D, Loebe M, Lumsden AB, von Tengg-Kobligk H (2013) Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta. Vasc Endovasc Surg 47(8):625–631. CrossRefGoogle Scholar
  33. 33.
    Karmonik C, Partovi S, Davies MG, Bismuth J, Shah DJ, Bilecen D, Staub D, Noon GP, Loebe M, Bongartz G, Lumsden AB (2013) Integration of the computational fluid dynamics technique with MRI in aortic dissections. Magn Reson Med 69(5):1438–1442. CrossRefGoogle Scholar
  34. 34.
    Pache G, Grohmann J, Bulla S, Arnold R, Stiller B, Schlensak C, Langer M, Blanke P (2011) Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: feasibility and image quality. Eur J Radiol 80(3):e440–e445. CrossRefGoogle Scholar
  35. 35.
    Oberhoffer R, Lang D, Feilen K (1989) The diameter of coronary arteries in infants and children without heart disease. Eur J Pediatrics 148(5):389–392CrossRefGoogle Scholar
  36. 36.
    Eichhorn JG, Jourdan C, Hill SL, Raman SV, Cheatham JP, Long FR (2008) CT of pediatric vascular stents used to treat congenital heart disease. Am J Roentgenol 190(5):1241–1246. CrossRefGoogle Scholar
  37. 37.
    Eichhorn JG, Long FR, Hill SL, Cheatham JP (2006) Multislice computed tomography as an adjunct to the management of an in-stent stenosis in an infant with congenital heart disease: imaging for the future. Catheter Cardiovasc Intervent 67(3):477–481. CrossRefGoogle Scholar
  38. 38.
    Eisentopf J, Achenbach S, Ulzheimer S, Layritz C, Wuest W, May M, Lell M, Ropers D, Klinghammer L, Daniel WG, Pflederer T (2013) Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation. JACC Cardiovasc Imag 6(4):458–465. CrossRefGoogle Scholar
  39. 39.
    Husmann L, Leschka S, Desbiolles L, Schepis T, Gaemperli O, Seifert B, Cattin P, Frauenfelder T, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H (2007) Coronary artery motion and cardiac phases: dependency on heart rate -- implications for CT image reconstruction. Radiology 245(2):567–576. CrossRefGoogle Scholar
  40. 40.
    Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710. CrossRefGoogle Scholar
  41. 41.
    Jorge C, Dubois C (2015) Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices (Auckland NZ) 8:359–367. Google Scholar
  42. 42.
    Hanawa T (2009) Materials for metallic stents. J Artif Organs 12(2):73–79. CrossRefGoogle Scholar
  43. 43.
    Gwon DI, Ko GY, Kim JH, Shin JH, Yoon HK, Sung KB (2013) Malignant superior vena cava syndrome: a comparative cohort study of treatment with covered stents versus uncovered stents. Radiology 266(3):979–987. CrossRefGoogle Scholar
  44. 44.
    Kim SH, Choi YH, Cho H-H, Lee SM, Shin S-M, Cheon J-E, Kim WS, Kim I-O (2016) Comparison of image quality and radiation dose between high-Pitch Mode and Low-Pitch Mode Spiral chest CT in small uncooperative children: the effect of respiratory rate. Eur Radiol 26(4):1149–1158. CrossRefGoogle Scholar
  45. 45.
    Lell MM, May M, Deak P, Alibek S, Kuefner M, Kuettner A, Kohler H, Achenbach S, Uder M, Radkow T (2011) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 46(2):116–123. CrossRefGoogle Scholar
  46. 46.
    Guberina N, Lechel U, Forsting M, Ringelstein A (2016) Efficacy of high-pitch CT protocols for radiation dose reduction. J Radiol Prot 36(4):N57–Nn66. CrossRefGoogle Scholar
  47. 47.
    Xia Y, Junjie Y, Ying Z, Bai H, Qi W, Qinhua J, Yundai C (2013) Accuracy of 128-slice dual-source CT using high-pitch spiral mode for the assessment of coronary stents: first in vivo experience. Eur J Radiol 82(4):617–622. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of RadiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations