Right ventricular basal inflow and outflow tract diameters overestimate right ventricular size in subjects with sigmoid-shaped interventricular septum: a study using three-dimensional echocardiography

  • Kazunori OkadaEmail author
  • Sanae Kaga
  • Kosuke Tsujita
  • Yoichi Sakamoto
  • Nobuo Masauzi
  • Taisei Mikami
Original Paper


Sigmoid-shaped ventricular septum (SS), a frequently encountered minor abnormality in echocardiographic examinations of the elderly, may have some influence on RV shape. We aimed to determine the influence of SS on the accuracy of the 6 RV linear diameter measurements in the light of three-dimensional echocardiographic (3DE) RV volume. The aorto-septal angle (ASA) was measured in the parasternal long-axis view using two-dimensional echocardiography (2DE) as an index of SS in 70 patients without major cardiac abnormalities who were subdivided into 35 with SS (ASA ≤ 120°) and 35 without SS (NSS). We measured RV end-diastolic volume (RVEDV) using 3DE; in addition, using 2DE, we measured basal RV diameter, mid-cavity diameter, longitudinal diameter and end-diastolic area in the apical four-chamber view; proximal RV outflow tract (RVOT) diameter in the parasternal long-axis view; and proximal and distal RVOT diameters in the parasternal short-axis view. RVEDV did not differ between the SS and NSS groups. The SS group had greater basal RV diameter and proximal and distal RVOT diameters than the NSS group. RV mid-cavity diameter, longitudinal diameter, and end-diastolic area did not differ between the groups. Among the 2DE parameters of RV size, RV end-diastolic area was most strongly correlated with RVEDV (r = 0.67), followed by RV mid-cavity diameter (r = 0.58). When SS is present, the echocardiographic basal RV diameter and RVOT diameters overestimate RV size, and the measurement of RV end-diastolic area and mid-cavity diameter more correctly reflect 3D RV volume.


Right ventricular size Sigmoid septum Three-dimensional echocardiography 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ghio S, Pazzano AS, Klersy C, Scelsi L, Raineri C, Camporotondo R et al (2011) Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol 107:628–632CrossRefGoogle Scholar
  2. 2.
    Baggen VJ, Leiner T, Post MC, van Dijk AP, Roos-Hesselink JW, Boersma E et al (2016) Cardiac magnetic resonance findings predicting mortality in patients with pulmonary arterial hypertension: a systematic review and meta-analysis. Eur Radiol 26:3771–3780CrossRefGoogle Scholar
  3. 3.
    Burgess MI, Mogulkoc N, Bright-Thomas RJ, Bishop P, Egan JJ, Ray SG (2002) Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr 15:633–639CrossRefGoogle Scholar
  4. 4.
    Frémont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A (2008) Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest 133:358–362CrossRefGoogle Scholar
  5. 5.
    Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ et al (2010) Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 121:252–258CrossRefGoogle Scholar
  6. 6.
    Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P et al (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320CrossRefGoogle Scholar
  7. 7.
    Ghio S, Temporelli PL, Klersy C, Simioniuc A, Girardi B, Scelsi L et al (2013) Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur J Heart Fail 15:408–414CrossRefGoogle Scholar
  8. 8.
    Haddad F, Hunt SA, Rosenthal DN, Murphy J (2008) Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448CrossRefGoogle Scholar
  9. 9.
    Surkova E, Muraru D, Iliceto S, Badano LP (2016) The use of multimodality cardiovascular imaging to assess right ventricular size and function. Int J Cardiol 214:54–69CrossRefGoogle Scholar
  10. 10.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713CrossRefGoogle Scholar
  11. 11.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39CrossRefGoogle Scholar
  12. 12.
    Goor D, Lillehei CW, Edwards JE (1969) The “sigmoid septum,” variation in the contour of the left ventricular outlet. Am J Roentgenol 107:366–376CrossRefGoogle Scholar
  13. 13.
    Waller BF (1988) The old-age heart: normal aging changes which can produce or mimic cardiac disease. Clin Cardiol 11:513–517CrossRefGoogle Scholar
  14. 14.
    Funabashi N, Umazume T, Takaoka H, Kataoka A, Ozawa K, Uehara M et al (2013) Sigmoid shaped interventricular septum exhibit normal myocardial characteristics and has a relationship with aging, ascending aortic sclerosis and its tilt to left ventricle. Int J Cardiol 168:4484–4488CrossRefGoogle Scholar
  15. 15.
    Okada K, Mikami T, Kaga S, Nakabachi M, Abe A, Yokoyama S et al (2014) Decreased aorto-septal angle may contribute to left ventricular diastolic dysfunction in healthy subjects. J Clin Ultrasound 42:341–347CrossRefGoogle Scholar
  16. 16.
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119CrossRefGoogle Scholar
  17. 17.
    Hioka T, Kaga S, Mikami T, Okada K, Murayama M, Masauzi N et al (2017) Overestimation by echocardiography of the peak systolic pressure gradient between the right ventricle and right atrium due to tricuspid regurgitation and the usefulness of the early-diastolic transpulmonary valve pressure gradient for estimating pulmonary artery pressure. Heart Vessels 32:833–842CrossRefGoogle Scholar
  18. 18.
    Tamborini G, Marsan NA, Gripari P, Maffessanti F, Brusoni D, Muratori M et al (2010) Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J Am Soc Echocardiogr 23:109–115CrossRefGoogle Scholar
  19. 19.
    Ogunyankin KO, Liu K, Lloyd-Jones DM, Colangelo LA, Gardin JM (2011) Reference values of right ventricular end-diastolic area defined by ethnicity and gender in a young adult population: the CARDIA study. Echocardiography 28:142–149CrossRefGoogle Scholar
  20. 20.
    D’Oronzio U, Senn O, Biaggi P, Gruner C, Jenni R, Tanner FC et al (2012) Right heart assessment by echocardiography: gender and body size matters. J Am Soc Echocardiogr 25:1251–1258CrossRefGoogle Scholar
  21. 21.
    Willis J, Augustine D, Shah R, Stevens C, Easaw J (2012) Right ventricular normal measurements: time to index? J Am Soc Echocardiogr 25:1259–1267CrossRefGoogle Scholar
  22. 22.
    Henein M, Waldenström A, Mörner S, Lindqvist P (2014) The normal impact of age and gender on right heart structure and function. Echocardiography 31:5–11CrossRefGoogle Scholar
  23. 23.
    Gaudron PD, Liu D, Scholz F, Hu K, Florescu C, Herrmann S et al (2016) The septal bulge: an early echocardiographic sign in hypertensive heart disease. J Am Soc Hypertens 10:70–80CrossRefGoogle Scholar
  24. 24.
    Dalldorf FG, Willis PW (1985) Angled aorta (“sigmoid septum”) as a cause of hypertrophic subaortic stenosis. Hum Pathol 16:457–462CrossRefGoogle Scholar
  25. 25.
    Krasnow N (1997) Subaortic septal bulge simulates hypertrophic cardiomyopathy by angulation of the septum with age, independent of focal hypertrophy. An echocardiographic study. J Am Soc Echocardiogr 10:545–555CrossRefGoogle Scholar
  26. 26.
    Kobayashi S, Sakai Y, Taguchi I, Utsunomiya H, Shiota T (2018) Causes of increased pressure gradient through the left ventricular outflow tract: a West Coast experience. J Echocardiogr 16:34–41CrossRefGoogle Scholar
  27. 27.
    Ranasinghe I, Yeoh T, Yiannikas J (2011) Negative ionotropic agents for the treatment of left ventricular outflow tract obstruction due to sigmoid septum and concentric left ventricular hypertrophy. Heart Lung Circ 20:579–586CrossRefGoogle Scholar
  28. 28.
    Canepa M, Pozios I, Vianello PF, Ameri P, Brunelli C, Ferrucci L et al (2016) Distinguishing ventricular septal bulge versus hypertrophic cardiomyopathy in the elderly. Heart 102:1087–1094CrossRefGoogle Scholar
  29. 29.
    Swinne CJ, Shapiro EP, Jamart J, Fleg JL (1996) Age-associated changes in left ventricular outflow tract geometry in normal subjects. Am J Cardiol 78:1070–1073CrossRefGoogle Scholar
  30. 30.
    Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T (2008) Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging 24:691–698CrossRefGoogle Scholar
  31. 31.
    Kim J, Srinivasan A, Seoane T, Di Franco A, Peskin CS, McQueen DM et al (2016) Echocardiographic linear dimensions for assessment of right ventricular chamber volume as demonstrated by cardiac magnetic resonance. J Am Soc Echocardiogr 29:861–870CrossRefGoogle Scholar
  32. 32.
    Shiran H, Zamanian RT, McConnell MV, Liang DH, Dash R, Heidary S et al (2014) Relationship between echocardiographic and magnetic resonance derived measures of right ventricular size and function in patients with pulmonary hypertension. J Am Soc Echocardiogr 27:405–412CrossRefGoogle Scholar
  33. 33.
    Valsangiacomo Buechel ER, Mertens LL (2012) Imaging the right heart: the use of integrated multimodality imaging. Eur Heart J 33:949–960CrossRefGoogle Scholar
  34. 34.
    Park JB, Lee SP, Lee JH, Yoon YE, Park EA, Kim HK et al (2016) Quantification of right ventricular volume and function using single-beat three-dimensional echocardiography: a validation study with cardiac magnetic resonance. J Am Soc Echocardiogr 29:392–401CrossRefGoogle Scholar
  35. 35.
    Grapsa J, O’Regan DP, Pavlopoulos H, Durighel G, Dawson D, Nihoyannopoulos P (2010) Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur J Echocardiogr 11:64–73CrossRefGoogle Scholar
  36. 36.
    Venkatachalam S, Wu G, Ahmad M (2017) Echocardiographic assessment of the right ventricle in the current era: Application in clinical practice. Echocardiography 34:1930–1947CrossRefGoogle Scholar
  37. 37.
    Dreyfus GD, Martin RP, Chan KM, Dulguerov F, Alexandrescu C (2015) Functional tricuspid regurgitation: a need to revise our understanding. J Am Coll Cardiol 65:2331–2336CrossRefGoogle Scholar
  38. 38.
    Warnes CA (2009) Adult congenital heart disease. J Am Coll Cardiol 54:1903–1910CrossRefGoogle Scholar
  39. 39.
    Dandel M, Hetzer R (2016) Echocardiographic assessment of the right ventricle: Impact of the distinctly load dependency of its size, geometry and performance. Int J Cardiol 221:1132–1142CrossRefGoogle Scholar
  40. 40.
    Bourantas CV, Loh HP, Bragadeesh T, Rigby AS, Lukaschuk EI, Garg S et al (2011) Relationship between right ventricular volumes measured by cardiac magnetic resonance imaging and prognosis in patients with chronic heart failure. Eur J Heart Fail 13:52–60CrossRefGoogle Scholar
  41. 41.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121:1533–1541CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Health SciencesHokkaido UniversitySapporoJapan
  2. 2.Medical Corporation Hokuseki Group, Kitanodai ClinicKitahirosimaJapan

Personalised recommendations