Advertisement

Assessment of artery calcification in atherosclerosis with dynamic 18F-FDG-PET/CT imaging in elderly subjects

  • Mamdouh S. Al-enezi
  • Redha-alla Abdo
  • Mohamed Yazid Mokeddem
  • Faiçal A. A. Slimani
  • Abdelouahed Khalil
  • Tamas Fulop
  • Eric Turcotte
  • M’hamed BentourkiaEmail author
Original Paper
  • 131 Downloads

Abstract

Glucose metabolism in atherosclerotic arteries has been shown to be an indicator of inflammation, which might be a precursor of plaque rupture. In this prospective study, we assessed the correlation between artery calcification and glucose metabolism by means of 18F-FDG PET/CT imaging in elderly subjects. Nineteen elderly subjects, with age ranging from 65 to 85 years, underwent CT and dynamic 18F-FDG-PET imaging. The artery calcification was determined with a threshold of 130 Hounsfield units. Intensity of calcification and ratio of calcification area to total artery area were classified in four sequential classes from CT images. The CT artery images were also classified as having single or multi-spot calcifications. Their respective glucose metabolism was assessed with fractional uptake rate (FUR). Factor analysis was used in this study to separate blood images from tissue to extract the blood time activity curves for FUR calculations. The artery images in PET data were corrected for partial volume effect. The total arterial segments analyzed were 1332, with 1085 without calcification (81%), 247 (19%) with calcification, and 94 segments were having multi-spot of calcifications. There was a statistically significant difference in FUR values between non-calcified to calcified segments and between subjects under medication to non-medication when comparing the subjects based on calcification area. No statistically significant differences of FUR were found between single spot as a function of intensity, while in the multi-spots, there was a statistically significant difference for all artery segments. Metabolism activity varies for non-calcified to calcified segments. Based on the metabolic activity represented by FUR, calcifications in multi-spots have different effects than in single spots.

Keywords

Atherosclerosis Calcification Arteries Plaque PET PET/CT 18F-FDG 

Notes

Acknowledgements

We are grateful to the Canadian Institutes of Health Research (CIHR) for their financial support, and to the Saudi Arabian culture bureau in Canada and University of Hail in kingdom of Saudi Arabia for the fellowship to Mr. Al-enezi.

Compliance with ethical standards

Conflict of interest

There are no conflict of interest.

References

  1. 1.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN. Wrenn SP (2005) Atherosclerotic plaque progression and vulnerability to rupture angiogenesis as a source of intraplaque hemorrhage. Arter Thromb Vasc Biol 25(10):2054–2061CrossRefGoogle Scholar
  2. 2.
    Libby P, Ridker PM, Hansson GK (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54(23):2129–2138CrossRefGoogle Scholar
  3. 3.
    Osborn EA, Kessinger CW, Tawakol A, Jaffer FA (2017) Metabolic and molecular imaging of atherosclerosis and venous thromboembolism. J Nucl Med 58:871–877.  https://doi.org/10.2967/jnumed.116.182873 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Costopoulos C, Liew TV, Bennett M (2008) Ageing and atherosclerosis: mechanisms and therapeutic options. Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2007.10.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Naghavi M, Madjid M, Khan MR et al (2001) New developments in the detection of vulnerable plaque. Curr Atheroscler Rep 3(2):125–135CrossRefGoogle Scholar
  6. 6.
    Nighoghossian N, Derex L, Douek P (2005) The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36:2764–2772.  https://doi.org/10.1161/01.STR.0000190895.51934.43 CrossRefPubMedGoogle Scholar
  7. 7.
    Pugliese G, Iacobini C, Fantauzzi CB, Menini S (2015) The dark and bright side of atherosclerotic calcification. Atherosclerosis 238:220–230.  https://doi.org/10.1016/j.atherosclerosis.2014.12.011 CrossRefPubMedGoogle Scholar
  8. 8.
    Revkin JH, Shear CL, Pouleur HG et al (2007) Biomarkers in the prevention and treatment of atherosclerosis: need, validation, and future. Pharmacol Rev 59:40–53.  https://doi.org/10.1124/pr.59.1.1 CrossRefPubMedGoogle Scholar
  9. 9.
    Owen DR, Lindsay AC, Choudhury RP, Fayad ZA (2011) Imaging of atherosclerosis. Annu Rev Med 62:25–40.  https://doi.org/10.1146/annurev-med-041709-133809 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Packard RRS, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38.  https://doi.org/10.1373/clinchem.2007.097360 CrossRefPubMedGoogle Scholar
  11. 11.
    Brown TM, Bittner V (2009) Biomarkers of atherosclerosis: clinical applications. Curr Cardiovasc Risk Rep 3:23–30.  https://doi.org/10.1007/s12170-009-0005-z CrossRefGoogle Scholar
  12. 12.
    Alexopoulos N, Raggi P (2009) Calcification in atherosclerosis. Nat Rev Cardiol 6:681–688.  https://doi.org/10.1038/nrcardio.2009.165 CrossRefPubMedGoogle Scholar
  13. 13.
    Li X, Heber D, Gonzalez JC et al (2017) Association between osteogenesis and inflammation during the progression of calcified plaque evaluated by 18 F-fluoride and 18 F-FDG. J Nucl Med 58:968–974.  https://doi.org/10.2967/jnumed.116.182790 CrossRefPubMedGoogle Scholar
  14. 14.
    Izquierdo-Garcia D, Davies JR, Graves MJ et al (2009) Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke. 40(1):86–93.  https://doi.org/10.1161/STROKEAHA.108.521393 CrossRefGoogle Scholar
  15. 15.
    Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832.  https://doi.org/10.1016/0735-1097(90)90282-T CrossRefPubMedGoogle Scholar
  16. 16.
    Ohya M, Otani H, Kimura K et al (2011) Vascular calcification estimated by aortic calcification area index is a significant predictive parameter of cardiovascular mortality in hemodialysis patients. Clin Exp Nephrol 15:877–883.  https://doi.org/10.1007/s10157-011-0517-y CrossRefPubMedGoogle Scholar
  17. 17.
    Van Der Bijl N, Joemai RMS, Geleijns J et al (2010) Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. Am J Roentgenol 195:1299–1305.  https://doi.org/10.2214/AJR.09.3734 CrossRefGoogle Scholar
  18. 18.
    Macnab JJ, Miller LT, Polatajko HJ (2001) The search for subtypes of DCD: is cluster analysis the answer? Hum Mov Sci 20(1–2):49–72.  https://doi.org/10.1016/S0167-9457(01)00028-8 CrossRefGoogle Scholar
  19. 19.
    Rutland M, Que L, Hassan IM (2000) “FUR”—one size suits all. Eur J Nucl Med 27:1708–1713.  https://doi.org/10.1007/s002590000337 CrossRefPubMedGoogle Scholar
  20. 20.
    Ishizu K, Nishizawa S, Yonekura Y et al (1994) Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 35:1104–1109PubMedGoogle Scholar
  21. 21.
    Rudd JH, Myers KS, Bansilal S et al (2007) (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50:892–896.  https://doi.org/10.1016/j.jacc.2007.05.024 CrossRefPubMedGoogle Scholar
  22. 22.
    Kitagawa T, Yamamoto H, Toshimitsu S et al (2017) 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 263:385–392.  https://doi.org/10.1016/j.atherosclerosis.2017.04.024 CrossRefGoogle Scholar
  23. 23.
    Bentourkia M (2003) PET kinetic modeling of 11C-acetate from projections. Comput Med Imaging Graph 27:373–379.  https://doi.org/10.1016/S0895-6111(03)00018-1 CrossRefPubMedGoogle Scholar
  24. 24.
    van den Hoff J, Oehme L, Schramm G et al (2013) The PET-derived tumor-to-blood standard uptake ratio (SUR) is superior to tumor SUV as a surrogate parameter of the metabolic rate of FDG. EJNMMI Res 3(1):77.  https://doi.org/10.1186/2191-219X-3-77 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45:1431–1434PubMedGoogle Scholar
  26. 26.
    Torizuka T, Nobezawa S, Momiki S et al (2000) Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur J Nucl Med 27(10):1538–1542.  https://doi.org/10.1007/s002590000312 CrossRefGoogle Scholar
  27. 27.
    Bentourkia M (2003) PET kinetic modeling of11C-acetate from projections. Comput Med Imaging Graph 27(5):373–379.  https://doi.org/10.1016/S0895-6111(03)00018-1 CrossRefGoogle Scholar
  28. 28.
    Christensen AN, Reichkendler MH, Larsen R et al (2014) Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET. Nucl Med Commun 35:353–361.  https://doi.org/10.1097/MNM.0000000000000063 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Croteau E, Lavallée É, Labbe SM et al (2010) Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging 37:1539–1550.  https://doi.org/10.1007/s00259-010-1443-z CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lodge MA, Chaudhry MA, Wahl RL (2012) Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med.  https://doi.org/10.2967/jnumed.111.101733 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825–1831.  https://doi.org/10.1016/j.jacc.2006.03.069 CrossRefPubMedGoogle Scholar
  32. 32.
    Maldonado N, Kelly-Arnold A, Laudier D et al (2015) Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma. Int J Cardiovasc Imaging 31:1079–1087.  https://doi.org/10.1007/s10554-015-0650-x CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wenk JF, Papadopoulos P, Zohdi TI (2010) Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation. J Biomech Eng 132:091011.  https://doi.org/10.1115/1.4001351 CrossRefPubMedGoogle Scholar
  34. 34.
    Burke AP, Kolodgie FD, Farb A et al (2002) Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105:297–303CrossRefPubMedGoogle Scholar
  35. 35.
    Wu Y-W, Kao H-L, Chen M-F et al (2007) Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 48:227–233PubMedGoogle Scholar
  36. 36.
    Kwee RM, Teule GJ, van Oostenbrugge RJ et al (2009) Multimodality imaging of carotid artery plaques: 18F-fluoro-2-deoxyglucose positron emission tomography, computed tomography, and magnetic resonance imaging. Stroke 40:3718–3724.  https://doi.org/10.1161/strokeaha.109.564088 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mamdouh S. Al-enezi
    • 1
    • 3
  • Redha-alla Abdo
    • 1
  • Mohamed Yazid Mokeddem
    • 1
  • Faiçal A. A. Slimani
    • 1
  • Abdelouahed Khalil
    • 2
  • Tamas Fulop
    • 2
  • Eric Turcotte
    • 1
  • M’hamed Bentourkia
    • 1
    Email author
  1. 1.Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health SciencesUniversity of SherbrookeSherbrookeCanada
  2. 2.Department of Medicine, Faculty of Medicine and Health SciencesUniversity of SherbrookeSherbrookeCanada
  3. 3.Department of Diagnostic Radiology, Faculty of Applied Medical ScienceUniversity of HailHailSaudi Arabia

Personalised recommendations