Advertisement

Comparison of the different imaging time points in delayed phase cardiac CT for myocardial scar assessment and extracellular volume fraction estimation in patients with old myocardial infarction

  • Ahmed Hamdy
  • Kakuya KitagawaEmail author
  • Yoshitaka Goto
  • Akimasa Yamada
  • Satoshi Nakamura
  • Masafumi Takafuji
  • Naoki Nagasawa
  • Hajime Sakuma
Original Paper

Abstract

Delayed enhancement cardiac CT is a potential tool for myocardial viability assessment and is essential for extracellular volume fraction (ECV) estimation with CT. The objective of this study is to determine the optimal delay time for acquisition of delayed CT scans. Thirty-five patients with enhancement pattern typical of previous myocardial infarction on delayed CT and 17 control subjects comprised the study population. Delayed scans were acquired at 3, 5 and 7 min after contrast material injection. Image quality and estimated ECV were compared among the three time points. Delayed CT at 5 min showed the highest signal-to-noise ratio of 15.2 ± 1.0 [p < 0.0001; vs. 3 min (13.6 ± 1.0), p = 0.0015; vs. 7 min (14.9 ± 1.0)]. Contrast-to-noise ratio of infarcted and remote myocardium was highest at 7 min (6.4 ± 2.5), but was not significantly different from 5 min (6.1 ± 2.2, p = 0.08). The ECV values were constant over the three time points, although, in segments containing infarcted myocardium, trend of lower values was noted at 3 min compared to 5 and 7 min. ECV values at 5 min was 27.1% ± 2.1% in control subjects, 27.2% ± 3.0% in remote segments of patients with infarction, and 39.6% ± 5.3% in segments containing infarcted myocardium. Myocardial scars are equally best visualized with delay time of 5 and 7 min post contrast administration. No significant difference was observed in ECV of healthy myocardium or focal scars among delay time of 3, 5, and 7 min. Delay time of 5 min after contrast injection may be recommended for CT delayed enhancement imaging.

Keywords

Diagnostic cardiac imaging Cardiovascular disease Myocardial infarction Myocardial viability assessment Extracellular volume fraction X-ray computed tomography 

Notes

Compliance with ethical standards

Conflict of interest

One of the authors (H.S.) received a research grant from DAIICHI SANKYO COMPANY, LIMITED, Fuji Pharma Co., Ltd., FUJIFILM RI Pharma Co., Ltd., Eisai Co., Ltd. All the other authors have nothing to disclose.

Supplementary material

10554_2018_1513_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 KB)

References

  1. 1.
    Aikawa T, Oyama-Manabe N, Naya M, Ohira H, Sugimoto A, Tsujino I, Obara M, Manabe O, Kudo K, Tsutsui H, Tamaki N (2017) Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: a feasibility study. Eur Radiol 27:4054–4063CrossRefPubMedGoogle Scholar
  2. 2.
    Tanabe Y, Kido T, Kurata A, Kouchi T, Fukuyama N, Yokoi T, Uetani T, Yamashita N, Miyagawa M, Mochizuki T (2018) Late iodine enhancement computed tomography with image subtraction for assessment of myocardial infarction. Eur Radiol 28:1285–1292CrossRefPubMedGoogle Scholar
  3. 3.
    Kurobe Y, Kitagawa K, Ito T, Kurita Y, Shiraishi Y, Nakamori S, Nakajima H, Nagata M, Ishida M, Dohi K (2014) Myocardial delayed enhancement with dual-source CT: advantages of targeted spatial frequency filtration and image averaging over half-scan reconstruction. J Cardiovasc Comput Tomogr 8:289–298CrossRefPubMedGoogle Scholar
  4. 4.
    Omori T, Kurita T, Dohi K, Takasaki A, Nakata T, Nakamori S, Fujimoto N, Kitagawa K, Hoshino K, Tanigawa T, Sakuma H, Ito M (2018) Prognostic impact of unrecognized myocardial scar in the non-culprit territories by cardiac magnetic resonance imaging in patients with acute myocardial infarction. Eur Heart J Cardiovasc Imaging 19:108–116CrossRefPubMedGoogle Scholar
  5. 5.
    Becker MAJ, Cornel JH, van de Ven PM, van Rossum AC, Allaart CP, Germans T (2018) The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: a review and meta-analysis. JACC Cardiovasc Imaging 11:1274–1284CrossRefPubMedGoogle Scholar
  6. 6.
    Hulten E, Agarwal V, Cahill M, Cole G, Vita T, Parrish S, Bittencourt MS, Murthy VL, Kwong R, Di Carli MF (2016) Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis clinical perspective: a systematic review and meta-analysis. Circ Cardiovasc Imaging 9:e005001PubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhuang B, Sirajuddin A, Wang S, Arai A, Zhao S, Lu M (2018) Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis. Heart Fail Rev 23:723–731CrossRefPubMedGoogle Scholar
  8. 8.
    Mendoza DD, Joshi SB, Weissman G, Taylor AJ, Weigold WG (2010) Viability imaging by cardiac computed tomography. J Cardiovasc Comput Tomogr 4:83–91CrossRefPubMedGoogle Scholar
  9. 9.
    Jacquier A, Boussel L, Amabile N, Bartoli JM, Douek P, Moulin G, Paganelli F, Saeed M, Revel D, Croisille P (2008) Multidetector computed tomography in reperfused acute myocardial infarction: assessment of infarct size and no-reflow in comparison with cardiac magnetic resonance imaging. Investig Radiol 43:773–781CrossRefGoogle Scholar
  10. 10.
    Boussel L, Ribagnac M, Bonnefoy E, Staat P, Elicker BM, Revel D, Douek P (2008) Assessment of acute myocardial infarction using MDCT after percutaneous coronary intervention: comparison with MRI. Am J Roentgenol 191:441–447CrossRefGoogle Scholar
  11. 11.
    Choe YH, Choo KS, Jeon E-S, Gwon H-C, Choi J-H, Park J-E (2008) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 66:292–299CrossRefPubMedGoogle Scholar
  12. 12.
    George RT, Arbab-Zadeh A, Miller JM, Vavere AL, Bengel FM, Lardo AC, Lima JA (2012) Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging 5:333–340CrossRefPubMedGoogle Scholar
  13. 13.
    Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, Gisellu G, Coche E, Vanoverschelde J-LJ (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833CrossRefPubMedGoogle Scholar
  14. 14.
    Kurita Y, Kitagawa K, Kurobe Y, Nakamori S, Nakajima H, Dohi K, Ito M, Sakuma H (2016) Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: a feasibility study. J Cardiovasc Comput Tomogr 10:237–241CrossRefPubMedGoogle Scholar
  15. 15.
    Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, Schuleri KH, Fernandes VR, Zviman M, Nazarian S (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lessick J, Dragu R, Mutlak D, Rispler S, Beyar R, Litmanovich D, Engel A, Agmon Y, Kapeliovich M, Hammerman H (2007) Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? 1. Radiology 244:736–744CrossRefPubMedGoogle Scholar
  17. 17.
    Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A, Günther RW, Kühl HP (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45:2042–2047CrossRefPubMedGoogle Scholar
  18. 18.
    Nieman K, Shapiro MD, Ferencik M, Nomura CH, Abbara S, Hoffmann U, Gold HK, Jang I-K, Brady TJ, Cury RC (2008) Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging 1. Radiology 247:49–56CrossRefPubMedGoogle Scholar
  19. 19.
    Brodoefel H, Klumpp B, Reimann A, Ohmer M, Fenchel M, Schroeder S, Miller S, Claussen C, Kopp A, Scheule A (2007) Late myocardial enhancement assessed by 64-MSCT in reperfused porcine myocardial infarction: diagnostic accuracy of low-dose CT protocols in comparison with magnetic resonance imaging. Eur Radiol 17:475–483CrossRefPubMedGoogle Scholar
  20. 20.
    Brodoefel H, Reimann A, Klumpp B, Fenchel M, Ohmer M, Miller S, Schroeder S, Claussen C, Scheule A, Kopp AF (2007) Assessment of myocardial viability in a reperfused porcine model: evaluation of different MSCT contrast protocols in acute and subacute infarct stages in comparison with MRI. J Comput Assisted Tomogr 31:290–298CrossRefGoogle Scholar
  21. 21.
    Nacif MS, Kawel N, Lee JJ, Chen X, Yao J, Zavodni A, Sibley CT, Lima JA, Liu S, Bluemke DA (2012) Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 264:876–883CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, Shaw LJ, Hausleiter J (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kurita Y, Kitagawa K, Kurobe Y, Nakamori S, Nakajima H, Dohi K, Ito M, Sakuma H (2016) Data on correlation between CT-derived and MRI-derived myocardial extracellular volume. Data Brief 7:1045–1047CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Treibel TA, Bandula S, Fontana M, White SK, Gilbertson JA, Herrey AS, Gillmore JD, Punwani S, Hawkins PN, Taylor SA (2015) Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr 9:585–592CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bandula S, White SK, Flett AS, Lawrence D, Pugliese F, Ashworth MT, Punwani S, Taylor SA, Moon JC (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403CrossRefPubMedGoogle Scholar
  26. 26.
    Goetti R, Feuchtner G, Stolzmann P, Donati OF, Wieser M, Plass A, Frauenfelder T, Leschka S, Alkadhi H (2011) Delayed enhancement imaging of myocardial viability: low-dose high-pitch CT versus MRI. Eur Radiol 21:2091CrossRefPubMedGoogle Scholar
  27. 27.
    Brodoefel H, Klumpp B, Reimann A, Fenchel M, Heuschmid M, Miller S, Schroeder S, Claussen C, Scheule A, Kopp A (2007) Sixty-four-MSCT in the characterization of porcine acute and subacute myocardial infarction: determination of transmurality in comparison to magnetic resonance imaging and histopathology. Eur J Radiol 62:235–246CrossRefPubMedGoogle Scholar
  28. 28.
    Jablonowski R, Wilson MW, Do L, Hetts SW, Saeed M (2014) Multidetector CT measurement of myocardial extracellular volume in acute patchy and contiguous infarction: validation with microscopic measurement. Radiology 274:370–378CrossRefPubMedGoogle Scholar
  29. 29.
    Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, Pastor A, Carr-White G, Razavi R, Schaeffter T (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC: Cardiovasc Imaging 6:475–484Google Scholar
  30. 30.
    Mahmod M, Piechnik SK, Levelt E, Ferreira VM, Francis JM, Lewis A, Pal N, Dass S, Ashrafian H, Neubauer S (2014) Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 16:92CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, Lachmann RH, Murphy E, Mehta A, Hughes DA (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441CrossRefPubMedGoogle Scholar
  32. 32.
    Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, Alharethi R, Li D, Hershberger RE (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295:H1234–H1242CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Klein C, Nekolla SG, Balbach T, Schnackenburg B, Nagel E, Fleck E, Schwaiger M (2004) The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 20:588–594CrossRefPubMedGoogle Scholar
  34. 34.
    Ugander M, Oki AJ, Hsu L-Y, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kitagawa K, Goto Y, Nakamura S, Takafuji M, Hamdy A, Ishida M, Sakuma H (2018) Dynamic CT perfusion imaging: state of the art. Cardiovasc Imaging Asia 2:38–48CrossRefGoogle Scholar
  36. 36.
    Goto Y, Kitagawa K, Uno M, Nakamori S, Ito T, Nagasawa N, Dohi K, Sakuma H (2017) Diagnostic accuracy of endocardial-to-epicardial myocardial blood flow ratio for the detection of significant coronary artery disease with dynamic myocardial perfusion dual-source computed tomography. Circ J 81:1477–1483CrossRefPubMedGoogle Scholar
  37. 37.
    Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, Soni AV, Bezerra H, Ghoshhajra BB, Petranovic M, Loureiro R, Feuchtner G, Gewirtz H, Hoffmann U, Mamuya WS, Brady TJ, Cury RC (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–1084CrossRefPubMedGoogle Scholar
  38. 38.
    Reimann AJ, Kuettner A, Klumpp B, Heuschmid M, Schumacher F, Teufel M, Beck T, Burgstahler C, Schröder S, Claussen CD (2008) Late enhancement using multidetector row computer tomography: a feasibility study with low dose 80 kV protocol. Eur J Radiol 66:127–133CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Mie University HospitalTsuJapan

Personalised recommendations