Relationships of high cardiac output with ventricular morphology, myocardial energetics, and energy costs in hemodialysis patients with preserved ejection fraction

  • Tomonari Harada
  • Masaru ObokataEmail author
  • Koji Kurosawa
  • Hidemi Sorimachi
  • Kuniko Yoshida
  • Hideki Ishida
  • Kyoko Ito
  • Tetsuya Ogawa
  • Yoshitaka Ando
  • Masahiko Kurabayashi
  • Kazuaki Negishi
Original Paper


Hemodialysis patients have conditions that increase cardiac output (CO), including arteriovenous fistula, fluid retention, vasodilator use, and anemia. We sought to determine the relationships between these factors and CO and to evaluate the effects of the high-output states on ventricular morphology, function, and myocardial energetics in hemodialysis patients, using noninvasive load-insensitive indices. Cardiovascular function was assessed in hemodialysis patients with high output [ejection fraction ≥ 50%, cardiac index (CI) > 3.5 L/min/m2, n = 30], those with normal output (CI < 3.0 L/min/m2, n = 161), and control subjects without hemodialysis (n = 155). As compared to control subjects and hemodialysis patients with normal CI, patients with elevated CI were anemic and displayed decreased systemic vascular resistance index (SVRI), excessive left ventricular (LV) contractility, larger LV volume, and tachycardia. Lower hemoglobin levels were correlated with decreased SVRI, excessive LV contractility, and higher heart rate, while estimated plasma volume and interdialytic weight gain were associated with larger LV volume, thus increasing CO. High output patients displayed markedly increased pressure–volume area (PVA) and PVA/stroke volume ratio, which were correlated directly with CO. The use of combination vasodilator therapy (angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker and calcium channel blocker) was not associated with high-output states. In conclusion, anemia and fluid retention are correlated with increased CO in hemodialysis patients. The high-output state is also associated with excessive myocardial work and energy cost.


Anemia Cardiac output Fluid retention Hemodialysis Myocardial energetics 



The authors thank RMSs. Kenya Okada, Tomoko Takada, Kanako Niwa, Takahiro Ikoma, and Keiko Morita for their assistance with the echocardiographic studies.

Compliance with ethical standards

Conflict of interest

Dr. Obokata received research funding from Kureha Corporation, Tokyo, Japan. The sponsors were not involved in the study design, data collection, analysis and interpretation, and preparation of the manuscript.

Supplementary material

10554_2018_1472_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 KB)
10554_2018_1472_MOESM2_ESM.tif (783 kb)
Supplementary material 2 (TIF 782 KB)
10554_2018_1472_MOESM3_ESM.tif (837 kb)
Supplementary material 3 (TIF 836 KB)


  1. 1.
    Foley RN, Collins AJ (2007) End-stage renal disease in the United States: an update from the United States Renal Data System. J Am Soc Nephrol 18:2644–2648CrossRefGoogle Scholar
  2. 2.
    Reddy YN, Melenovsky V, Redfield MM et al (2016) High-output heart failure: a 15-year experience. J Am Coll Cardiol 68:473–482CrossRefGoogle Scholar
  3. 3.
    Wasse H, Singapuri MS (2012) High-output heart failure: how to define it, when to treat it, and how to treat it. Semin Nephrol 32:551–557CrossRefGoogle Scholar
  4. 4.
    Singh S, Elramah M, Allana SS et al (2014) A case series of real-time hemodynamic assessment of high output heart failure as a complication of arteriovenous access in dialysis patients. Semin Dial 27:633–638CrossRefGoogle Scholar
  5. 5.
    Stern AB, Klemmer PJ (2011) High-output heart failure secondary to arteriovenous fistula. Hemodial Int 15:104–107CrossRefGoogle Scholar
  6. 6.
    Iwashima Y, Horio T, Takami Y et al (2002) Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am J Kidney Dis 40:974–982CrossRefGoogle Scholar
  7. 7.
    Dundon BK, Torpey K, Nelson AJ et al (2014) The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: a longitudinal magnetic resonance imaging study. Int J Nephrol Renovasc Dis 7:337–345Google Scholar
  8. 8.
    Ishikawa K, Chemaly ER, Tilemann L et al (2012) Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/dt(max) complementary or redundant? Am J Physiol Heart Circ Physiol 302:H1423–H1428CrossRefGoogle Scholar
  9. 9.
    Obokata M, Negishi K, Marwick TH et al (2015) Comparison of different interdialytic intervals among hemodialysis patients on their echocardiogram-based cardiovascular parameters. Am Heart J 169:523–530.e522CrossRefGoogle Scholar
  10. 10.
    Obokata M, Kurosawa K, Ishida H et al (2017) Incremental prognostic value of ventricular-arterial coupling over ejection fraction in patients with maintenance hemodialysis. J Am Soc Echocardiogr 30:444–453CrossRefGoogle Scholar
  11. 11.
    Obokata M, Sunaga H, Ishida H et al (2016) Independent and incremental prognostic value of novel cardiac biomarkers in chronic hemodialysis patients. Am Heart J 179:29–41CrossRefGoogle Scholar
  12. 12.
    Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19CrossRefGoogle Scholar
  13. 13.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14CrossRefGoogle Scholar
  14. 14.
    Borlaug BA, Olson TP, Lam CS et al (2010) Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol 56:845–854CrossRefGoogle Scholar
  15. 15.
    Obokata M, Nagata Y, Kado Y et al (2017) Ventricular-arterial coupling and exercise-induced pulmonary hypertension during low-level exercise in heart failure with preserved or reduced ejection fraction. J Card Fail 23:216–220CrossRefGoogle Scholar
  16. 16.
    Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277CrossRefGoogle Scholar
  17. 17.
    Takaoka H, Takeuchi M, Odake M et al (1993) Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 87:59–69CrossRefGoogle Scholar
  18. 18.
    Kawaguchi M, Hay I, Fetics B et al (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720CrossRefGoogle Scholar
  19. 19.
    Foley RN, Parfrey PS, Harnett JD et al (1996) The impact of anemia on cardiomyopathy, morbidity, and mortality in end-stage renal disease. Am J Kidney Dis 28:53–61CrossRefGoogle Scholar
  20. 20.
    Anand IS, Chandrashekhar Y, Wander GS et al (1995) Endothelium-derived relaxing factor is important in mediating the high output state in chronic severe anemia. J Am Coll Cardiol 25:1402–1407CrossRefGoogle Scholar
  21. 21.
    Ni Z, Morcos S, Vaziri ND (1997) Up-regulation of renal and vascular nitric oxide synthase in iron-deficiency anemia. Kidney Int 52:195–201CrossRefGoogle Scholar
  22. 22.
    Fowler NO, Holmes JC (1975) Blood viscosity and cardiac output in acute experimental anemia. J Appl Physiol 39:453–456CrossRefGoogle Scholar
  23. 23.
    Anand IS, Chandrashekhar Y, Ferrari R et al (1993) Pathogenesis of oedema in chronic severe anaemia: studies of body water and sodium, renal function, haemodynamic variables, and plasma hormones. Br Heart J 70:357–362CrossRefGoogle Scholar
  24. 24.
    Borlaug BA, Lam CS, Roger VL et al (2009) Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol 54:410–418CrossRefGoogle Scholar
  25. 25.
    Kalantar-Zadeh K, Regidor DL, Kovesdy CP et al (2009) Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation 119:671–679CrossRefGoogle Scholar
  26. 26.
    Agarwal R (2010) Hypervolemia is associated with increased mortality among hemodialysis patients. Hypertension 56:512–517CrossRefGoogle Scholar
  27. 27.
    De Lima JJ, Vieira ML, Molnar LJ et al (1999) Cardiac effects of persistent hemodialysis arteriovenous access in recipients of renal allograft. Cardiology 92:236–239CrossRefGoogle Scholar
  28. 28.
    van Duijnhoven EC, Cheriex EC, Tordoir JH et al (2001) Effect of closure of the arteriovenous fistula on left ventricular dimensions in renal transplant patients. Nephrol Dial Transplant 16:368–372CrossRefGoogle Scholar
  29. 29.
    Buckberg GD, Luck JC, Hoffman JI (1970) Total and regional coronary blood flow after acute arteriovenous fistula. Surg Forum 21:171–173Google Scholar
  30. 30.
    Savage MT, Ferro CJ, Sassano A et al (2002) The impact of arteriovenous fistula formation on central hemodynamic pressures in chronic renal failure patients: a prospective study. Am J Kidney Dis 40:753–759CrossRefGoogle Scholar
  31. 31.
    Daugirdas JT, Depner TA, Inrig J et al (2015) KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 66:884–930CrossRefGoogle Scholar
  32. 32.
    Reddy YN, Obokata M, Dean PG et al (2017) Long-term cardiovascular changes following creation of arteriovenous fistula in patients with end stage renal disease. Eur Heart J 38:1913–1923CrossRefGoogle Scholar
  33. 33.
    Wohlfahrt P, Rokosny S, Melenovsky V et al (2016) Cardiac remodeling after reduction of high-flow arteriovenous fistulas in end-stage renal disease. Hypertens Res 39:654–659CrossRefGoogle Scholar
  34. 34.
    Movilli E, Viola BF, Brunori G et al (2010) Long-term effects of arteriovenous fistula closure on echocardiographic functional and structural findings in hemodialysis patients: a prospective study. Am J Kidney Dis 55:682–689CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Tomonari Harada
    • 1
  • Masaru Obokata
    • 1
    Email author
  • Koji Kurosawa
    • 2
  • Hidemi Sorimachi
    • 1
  • Kuniko Yoshida
    • 1
  • Hideki Ishida
    • 3
  • Kyoko Ito
    • 3
    • 4
  • Tetsuya Ogawa
    • 3
    • 5
  • Yoshitaka Ando
    • 3
  • Masahiko Kurabayashi
    • 1
  • Kazuaki Negishi
    • 1
    • 6
    • 7
  1. 1.Department of Cardiovascular MedicineGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Department of Clinical Laboratory CenterGunma University HospitalMaebashiJapan
  3. 3.Hidaka HospitalTakasakiJapan
  4. 4.Department of NephrologyHeisei-Hidaka ClinicTakasakiJapan
  5. 5.Department of MedicineTokyo Women’s Medical University Medical Center EastTokyoJapan
  6. 6.Menzies Institute for Medical ResearchUniversity of TasmaniaHobartAustralia
  7. 7.Nepean Clinical School, Faculty of Medicine and HealthUniversity of SydneyKingswoodAustralia

Personalised recommendations