Advertisement

Association between beta-adrenoceptor antagonist-induced sympathicolysis and severity of coronary artery disease as assessed by coronary computed tomography angiography (CCTA)

  • Michael Messerli
  • Monika Maredziak
  • Susan Bengs
  • Ahmed Haider
  • Andreas A. Giannopoulos
  • Moritz Schwyzer
  • Dominik C. Benz
  • Elia von Felten
  • Ken Kudura
  • Valerie Treyer
  • Michael Fiechter
  • Christoph Gräni
  • Tobias A. Fuchs
  • Aju P. Pazhenkottil
  • Ronny R. Buechel
  • Philipp A. Kaufmann
  • Catherine GebhardEmail author
Original Paper

Abstract

Enhanced sympathetic nervous system activity is associated with increased mortality in many cardiac conditions including heart failure and coronary artery disease (CAD). To ensure adequate image quality of coronary CT angiography (CCTA), pre-scan β-adrenergic blockers (BB) are routinely administered. It is currently unknown whether sensitivity to sympathicolytic compounds is associated with severity of CAD. A total of 2633 consecutive patients (1733 [65.8%] men and 900 [34.2%] women, mean age 56.7 ± 11.5 years) undergoing CCTA for exclusion of significant CAD at our department between 06/2013 and 12/2016 were evaluated. Acute heart rate (HR) responses to BB administration were recorded in all patients. Coronary plaque burden as indicated by segment severity score (SSS), segment involvement score (SIS), and significant CAD (i.e. > 50% luminal narrowing) was higher in weak responders to BB as compared to strong responders to BB (p = 0.001 for SSS and SIS, and p = 0.021 for significant CAD). Accordingly, in a multiple linear regression model adjusted for known risk factors of CAD such as smoking, hypertension, diabetes and dyslipidaemia, as well as age, sex, body mass index (BMI), glomerular filtration rate, and HR during CCTA scan, a strong response to BB was selected as a significant independent negative predictor of coronary plaque burden (beta coefficient − 0.08, p = 0.001). We demonstrate that individuals with a weak acute response to BB administration encounter an increased risk of severe CAD. Taking into account sensitivity to sympatho-inhibition may add complementary information in patients undergoing CCTA for evaluation of CAD.

Keywords

Cardiac sympathetic activity Cardiovascular risk Coronary computed tomography angiography 

Notes

Acknowledgements

This study was supported by grants from the Iten-Kohaut Foundation, Switzerland (MM), the Swiss National Science Foundation (SNSF), the Olga Mayenfisch Foundation, Switzerland, the OPO Foundation, Switzerland, the Novartis Foundation, Switzerland, the Helmut Horten Foundation, Switzerland, and the Swissheart Foundation (CG).

Compliance with ethical standards

Conflict of interest

Michael Messerli received a research grant from the Iten-Kohaut Foundation, Switzerland. Catherine Gebhard received research grants from the Novartis Foundation, Switzerland. The University Hospital of Zurich holds a research contract with GE Healthcare. No further specific grants from funding agencies in the public, commercial, or not-for-profit sectors were received for this study.

Research involving human participants

The study was conducted in compliance with ICH-GCP-rules and the declaration of Helsinki and was evaluated and approved by the local ethics committee (BASEC No. 2017-01112).

Informed consent

The need for written informed consent was waived by the ethics committee due to the retrospective nature of the study.

References

  1. 1.
    World Health Organisation (2017) Cardiovascular disease statistic. WHO. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 06 Sept 2018
  2. 2.
    Beaglehole R (1999) International trends in coronary heart disease mortality and incidence rates. J Cardiovasc Risk 6(2):63–68CrossRefGoogle Scholar
  3. 3.
    American College of Cardiology Foundation Task Force on Expert Consensus D, Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC et al ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on expert consensus documents. J Am Coll Cardiol. 2010;55(23):2663–2699CrossRefGoogle Scholar
  4. 4.
    Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29(2):191–197CrossRefGoogle Scholar
  5. 5.
    Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301(5):500–507CrossRefGoogle Scholar
  6. 6.
    Stocker TJ, Deseive S, Leipsic J, Hadamitzky M, Chen MY, Rubinshtein R et al (2018) Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiation dose estimates of cardiac CT angiography in daily practice in 2017 (PROTECTION VI). Eur Heart J 39(41):3715–3723CrossRefGoogle Scholar
  7. 7.
    Stehli J, Fuchs TA, Bull S, Clerc OF, Possner M, Buechel RR et al (2014) Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J Am Coll Cardiol 64(8):772–780CrossRefGoogle Scholar
  8. 8.
    Maeda E, Tomizawa N, Yamamoto K, Kanno S, Akahane M, Ino K et al (2015) Optimized heart rate for 320-row cardiac CT can be feasibly predicted from prescan parameters. Springerplus 4:697CrossRefGoogle Scholar
  9. 9.
    Herzog BA, Husmann L, Burkhard N, Gaemperli O, Valenta I, Tatsugami F et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29(24):3037–3042CrossRefGoogle Scholar
  10. 10.
    Middlekauff HR (1997) Mechanisms and implications of autonomic nervous system dysfunction in heart failure. Curr Opin Cardiol 12(3):265–275CrossRefGoogle Scholar
  11. 11.
    Florea VG, Cohn JN (2014) The autonomic nervous system and heart failure. Circ Res 114(11):1815–1826CrossRefGoogle Scholar
  12. 12.
    Remme WJ (1998) The sympathetic nervous system and ischaemic heart disease. Eur Heart J 19:F62–F71Google Scholar
  13. 13.
    Thrall G, Lane D, Carroll D, Lip GY (2007) A systematic review of the effects of acute psychological stress and physical activity on haemorheology, coagulation, fibrinolysis and platelet reactivity: implications for the pathogenesis of acute coronary syndromes. Thromb Res 120(6):819–847CrossRefGoogle Scholar
  14. 14.
    Benz DC, Grani C, Hirt Moch B, Mikulicic F, Vontobel J, Fuchs TA et al (2016) Minimized radiation and contrast agent exposure for coronary computed tomography angiography: first clinical experience on a latest generation 256-slice scanner. Acad Radiol 23(8):1008–1014CrossRefGoogle Scholar
  15. 15.
    Benz DC, Fuchs TA, Grani C, Bruengger AAS, Clerc OF, Mikulicic F et al (2018) Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography. Eur Heart J Cardiovasc Imaging 19(2):193–198CrossRefGoogle Scholar
  16. 16.
    Gaemperli O, Husmann L, Schepis T, Koepfli P, Valenta I, Jenni W et al (2009) Coronary CT angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? Eur Heart J 30(23):2921–2929CrossRefGoogle Scholar
  17. 17.
    Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, Budoff MJ et al (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3(2):122–136CrossRefGoogle Scholar
  18. 18.
    Al-Mallah MH, Qureshi W, Lin FY, Achenbach S, Berman DS, Budoff MJ et al (2014) Does coronary CT angiography improve risk stratification over coronary calcium scoring in symptomatic patients with suspected coronary artery disease? Results from the prospective multicenter international confirm registry. Eur Heart J Cardiovasc Imaging 15(3):267–274CrossRefGoogle Scholar
  19. 19.
    Swedberg K, Komajda M, Bohm M, Borer J, Robertson M, Tavazzi L et al (2012) Effects on outcomes of heart rate reduction by ivabradine in patients with congestive heart failure: is there an influence of beta-blocker dose?: findings from the SHIFT (systolic heart failure treatment with the I(f) inhibitor ivabradine trial) study. J Am Coll Cardiol 59(22):1938–1945CrossRefGoogle Scholar
  20. 20.
    Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA et al (2000) Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis risk in communities. Circulation 102(11):1239–1244CrossRefGoogle Scholar
  21. 21.
    Freedman NJ, Lefkowitz RJ (2004) Anti-beta(1)-adrenergic receptor antibodies and heart failure: causation, not just correlation. J Clin Invest 113(10):1379–1382CrossRefGoogle Scholar
  22. 22.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975CrossRefGoogle Scholar
  23. 23.
    McAlister FA, Wiebe N, Ezekowitz JA, Leung AA, Armstrong PW (2009) Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med 150(11):784–794CrossRefGoogle Scholar
  24. 24.
    Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE et al (1996) Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 94(11):2807–2816CrossRefGoogle Scholar
  25. 25.
    Cohen-Solal A, Jacobson AF, Pina IL (2017) Beta blocker dose and markers of sympathetic activation in heart failure patients: interrelationships and prognostic significance. ESC Heart Fail 4(4):499–506CrossRefGoogle Scholar
  26. 26.
    Shin J, Johnson JA (2007) Pharmacogenetics of beta-blockers. Pharmacotherapy 27(6):874–887CrossRefGoogle Scholar
  27. 27.
    Charkoudian N, Joyner MJ, Sokolnicki LA, Johnson CP, Eisenach JH, Dietz NM et al (2006) Vascular adrenergic responsiveness is inversely related to tonic activity of sympathetic vasoconstrictor nerves in humans. J Physiol 572(Pt 3):821–827CrossRefGoogle Scholar
  28. 28.
    Bell C, Seals DR, Monroe MB, Day DS, Shapiro LF, Johnson DG et al (2001) Tonic sympathetic support of metabolic rate is attenuated with age, sedentary lifestyle, and female sex in healthy adults. J Clin Endocrinol Metab 86(9):4440–4444CrossRefGoogle Scholar
  29. 29.
    Haeusler G (1990) Pharmacology of beta-blockers: classical aspects and recent developments. J Cardiovasc Pharmacol 16(Suppl 5):S1–S9CrossRefGoogle Scholar
  30. 30.
    Camm AJ, Pratt CM, Schwartz PJ, Al-Khalidi HR, Spyt MJ, Holroyde MJ et al (2004) Mortality in patients after a recent myocardial infarction—a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation 109(8):990–996CrossRefGoogle Scholar
  31. 31.
    Manfrini O, Pizzi C, Trere D, Fontana F, Bugiardini R (2003) Parasympathetic failure and risk of subsequent coronary events in unstable angina and non-ST-segment elevation myocardial infarction. Eur Heart J 24(17):1560–1566CrossRefGoogle Scholar
  32. 32.
    Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P (2005) Heart-rate profile during exercise as a predictor of sudden death. New Engl J Med 352(19):1951–1958CrossRefGoogle Scholar
  33. 33.
    Brugts JJ, Bertrand M, Remme W, Ferrari R, Fox K, MacMahon S et al (2017) The treatment effect of an ACE-inhibitor based regimen with perindopril in relation to beta-blocker use in 29,463 patients with vascular disease: a combined analysis of individual data of ADVANCE, EUROPA and PROGRESS trials. Cardiovasc Drugs Ther 31(4):391–400CrossRefGoogle Scholar
  34. 34.
    Huikuri HV, Jokinen V, Syvanne M, Nieminen MS, Airaksinen KE, Ikaheimo MJ et al (1999) Heart rate variability and progression of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 19(8):1979–1985CrossRefGoogle Scholar
  35. 35.
    Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K et al (1990) Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation 81(4):1217–1224CrossRefGoogle Scholar
  36. 36.
    Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ et al (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT angiography evaluation for clinical outcomes: an international multicenter registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 58(8):849–860CrossRefGoogle Scholar
  37. 37.
    Perski A, Olsson G, Landou C, Defaire U, Theorell T, Hamsten A (1992) Minimum heart-rate and coronary atherosclerosis—Independent relations to global severity and rate of progression of angiographic lesions in men with myocardial-infarction at a young age. Am Heart J 123(3):609–616CrossRefGoogle Scholar
  38. 38.
    Burger IA, Lohmann C, Messerli M, Bengs S, Becker A, Maredziak M et al (2018) Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging. PloS ONE 13(8):e0202302CrossRefGoogle Scholar
  39. 39.
    Hu H, Jui HY, Hu FC, Chen YH, Lai LP, Lee CM (2007) Predictors of therapeutic response to beta-blockers in patients with heart failure in Taiwan. J Formos Med Assoc 106(8):641–648CrossRefGoogle Scholar
  40. 40.
    van der Werf NR, Willemink MJ, Willems TP, Vliegenthart R, Greuter MJW, Leiner T (2018) Influence of heart rate on coronary calcium scores: a multi-manufacturer phantom study. Int J Cardiovasc Imaging 34(6):959–966CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Michael Messerli
    • 1
  • Monika Maredziak
    • 1
    • 2
  • Susan Bengs
    • 1
    • 2
  • Ahmed Haider
    • 1
    • 2
  • Andreas A. Giannopoulos
    • 1
  • Moritz Schwyzer
    • 1
  • Dominik C. Benz
    • 1
  • Elia von Felten
    • 1
  • Ken Kudura
    • 1
  • Valerie Treyer
    • 1
  • Michael Fiechter
    • 1
  • Christoph Gräni
    • 1
  • Tobias A. Fuchs
    • 1
  • Aju P. Pazhenkottil
    • 1
  • Ronny R. Buechel
    • 1
  • Philipp A. Kaufmann
    • 1
  • Catherine Gebhard
    • 1
    • 2
    • 3
    Email author return OK on get
  1. 1.Department of Nuclear MedicineUniversity Hospital ZurichZurichSwitzerland
  2. 2.Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
  3. 3.Department of Nuclear Medicine, Cardiac ImagingUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations