Advertisement

Speckle tracking echocardiography in healthy children: comparison between the QLAB by Philips and the EchoPAC by General Electric

  • Pascal AmedroEmail author
  • Charlene Bredy
  • Sophie Guillaumont
  • Gregoire De La Villeon
  • Lucie Gamon
  • Kathleen Lavastre
  • Albano C. Meli
  • Sylvain Richard
  • Olivier Cazorla
  • Alain Lacampagne
  • Thibault Mura
  • Marie Vincenti
Original Paper

Abstract

Speckle tracking echocardiography (STE) has become a useful tool in cardiology but remains scarcely developed in pediatrics. We aimed to evaluate the feasibility of STE analyses in healthy children and compare reliability of STE for left and right ventricles (LV, RV) between the EchoPAC (GE Healthcare) and the QLAB (Philips Healthcare) software systems. Healthy children were screened for this prospective cross-sectional study. Analyses were performed upon five levels of variability: intra/inter-ultrasound system, intra/inter-sonographer and intra/inter-analyzer. The feasibility was measured, and the tracking quality informed. The study included 156 healthy children. Mean age was 7.6 ± 5 years [1 month–16.8 years]. Conventional echocardiography variables were similar in both ultrasound systems. For both software brands, the tracking quality was excellent in the LV longitudinal and circumferential displacements, but more limited in the RV free wall longitudinal strain. Inter-ultrasound system correlation was poor for global longitudinal and circumferential LV strain (ICC of 0.34 [IC95% 0.06–0.57]) and 0.12 [IC95% − 0.18 to − 0.40], respectively). We observed poor inter-sonographer reliability for both global LV longitudinal strain and global LV circumferential strain with the two software systems. Inter-analyzer variability was good especially for the global LV circumferential strain using Philips software (ICC of 0.78 [IC95% 0.52–0.91]). In pediatrics, the Philips/GE inter-vendor level of variability in STE analysis is mainly due to inter ultrasound systems and inter sonographers’ differences. These results need to be taken into account when using STE analysis in the follow-up of cardiac children. Clinicaltrials.gov: NCT02056925.

Keywords

2D strain Inter-vendor Variability Pediatrics Pediatric cardiology 

Notes

Acknowledgements

We thank Anne Cadene for the quality of study monitoring.

Funding

This work was supported by an institutional clinical research program from Montpellier University Hospital [Grant Reference Number UF9167].

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by South Mediterranean IV Ethics Committee (2013-A00579-36).

Informed consent

Informed consent was obtained from all parents or legal guardians of children included in the study.

References

  1. 1.
    D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1(3):154–170.  https://doi.org/10.1053/euje.2000.0031 CrossRefGoogle Scholar
  2. 2.
    Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zaca V, Ballo P, D’Andrea A, Muraru D, Losi M, Agricola E, D’Errico A, Buralli S, Sciomer S, Nistri S, Badano L, Echocardiography Study Group Of The Italian Society Of C (2011) Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med 30(1):71–83CrossRefGoogle Scholar
  3. 3.
    Teske AJ, De Boeck BW, Melman PG, Sieswerda GT, Doevendans PA, Cramer MJ (2007) Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc Ultrasound 5:27.  https://doi.org/10.1186/1476-7120-5-27 CrossRefGoogle Scholar
  4. 4.
    Kosmala W, Plaksej R, Strotmann JM, Weigel C, Herrmann S, Niemann M, Mende H, Stork S, Angermann CE, Wagner JA, Weidemann F (2008) Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study. J Am Soc Echocardiogr 21(12):1309–1317.  https://doi.org/10.1016/j.echo.2008.10.006 CrossRefGoogle Scholar
  5. 5.
    Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624.  https://doi.org/10.1016/j.jacc.2009.04.061 CrossRefGoogle Scholar
  6. 6.
    Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J 3rd (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113(7):960–968.  https://doi.org/10.1161/CIRCULATIONAHA.105.571455 CrossRefGoogle Scholar
  7. 7.
    Anwar S, Negishi K, Borowszki A, Gladding P, Popovic ZB, Erenberg F, Thomas JD (2017) Comparison of two-dimensional strain analysis using vendor-independent and vendor-specific software in adult and pediatric patients. JRSM Cardiovasc Dis 6:2048004017712862.  https://doi.org/10.1177/2048004017712862 Google Scholar
  8. 8.
    Lorch SM, Ludomirsky A, Singh GK (2008) Maturational and growth-related changes in left ventricular longitudinal strain and strain rate measured by two-dimensional speckle tracking echocardiography in healthy pediatric population. J Am Soc Echocardiogr 21(11):1207–1215.  https://doi.org/10.1016/j.echo.2008.08.011 CrossRefGoogle Scholar
  9. 9.
    Sato Y, Maruyama A, Ichihashi K (2012) Myocardial strain of the left ventricle in normal children. J Cardiol 60(2):145–149.  https://doi.org/10.1016/j.jjcc.2012.01.015 CrossRefGoogle Scholar
  10. 10.
    Marcus KA, Mavinkurve-Groothuis AM, Barends M, van Dijk A, Feuth T, de Korte C, Kapusta L (2011) Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr 24(6):625–636.  https://doi.org/10.1016/j.echo.2011.01.021 CrossRefGoogle Scholar
  11. 11.
    Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH (2014) Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging 15(3):324–331.  https://doi.org/10.1093/ehjci/jet159 CrossRefGoogle Scholar
  12. 12.
    Basu S, Frank LH, Fenton KE, Sable CA, Levy RJ, Berger JT (2012) Two-dimensional speckle tracking imaging detects impaired myocardial performance in children with septic shock, not recognized by conventional echocardiography. Pediatr Crit Care Med 13(3):259–264.  https://doi.org/10.1097/PCC.0b013e3182288445 CrossRefGoogle Scholar
  13. 13.
    Cabrera AG, Chen DW, Pignatelli RH, Khan MS, Jeewa A, Mery CM, McKenzie ED, Fraser CD Jr (2015) Outcomes of anomalous left coronary artery from pulmonary artery repair: beyond normal function. Ann Thorac Surg 99(4):1342–1347.  https://doi.org/10.1016/j.athoracsur.2014.12.035 CrossRefGoogle Scholar
  14. 14.
    Friedberg MK, Slorach C (2008) Relation between left ventricular regional radial function and radial wall motion abnormalities using two-dimensional speckle tracking in children with idiopathic dilated cardiomyopathy. Am J Cardiol 102(3):335–339.  https://doi.org/10.1016/j.amjcard.2008.03.064 CrossRefGoogle Scholar
  15. 15.
    Mingo-Santos S, Monivas-Palomero V, Garcia-Lunar I, Mitroi CD, Goirigolzarri-Artaza J, Rivero B, Oteo JF, Castedo E, Gonzalez-Mirelis J, Cavero MA, Gomez-Bueno M, Segovia J, Alonso-Pulpon L (2015) Usefulness of two-dimensional strain parameters to diagnose acute rejection after heart transplantation. J Am Soc Echocardiogr 28(10):1149–1156.  https://doi.org/10.1016/j.echo.2015.06.005 CrossRefGoogle Scholar
  16. 16.
    King A, Thambyrajah J, Leng E, Stewart MJ (2016) Global longitudinal strain: a useful everyday measurement? Echo Res Pract 3(3):85–93.  https://doi.org/10.1530/ERP-16-0022 CrossRefGoogle Scholar
  17. 17.
    Costa SP, Beaver TA, Rollor JL, Vanichakarn P, Magnus PC, Palac RT (2014) Quantification of the variability associated with repeat measurements of left ventricular two-dimensional global longitudinal strain in a real-world setting. J Am Soc Echocardiogr 27(1):50–54.  https://doi.org/10.1016/j.echo.2013.08.021 CrossRefGoogle Scholar
  18. 18.
    Levy PT, Sanchez Mejia AA, Machefsky A, Fowler S, Holland MR, Singh GK (2014) Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 27(5):549–560.  https://doi.org/10.1016/j.echo.2014.01.015.CrossRefGoogle Scholar
  19. 19.
    Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ (2010) Changing mortality in congenital heart disease. J Am Coll Cardiol 56(14):1149–1157.  https://doi.org/10.1016/j.jacc.2010.03.085 CrossRefGoogle Scholar
  20. 20.
    Okumura K, Humpl T, Dragulescu A, Mertens L, Friedberg MK (2014) Longitudinal assessment of right ventricular myocardial strain in relation to transplant-free survival in children with idiopathic pulmonary hypertension. J Am Soc Echocardiogr 27(12):1344–1351.  https://doi.org/10.1016/j.echo.2014.09.002 CrossRefGoogle Scholar
  21. 21.
    Eindhoven JA, Menting ME, van den Bosch AE, McGhie JS, Witsenburg M, Cuypers JA, Boersma E, Roos-Hesselink JW (2015) Quantitative assessment of systolic right ventricular function using myocardial deformation in patients with a systemic right ventricle. Eur Heart J Cardiovasc Imaging 16(4):380–388.  https://doi.org/10.1093/ehjci/jeu194 CrossRefGoogle Scholar
  22. 22.
    Kalogeropoulos AP, Deka A, Border W, Pernetz MA, Georgiopoulou VV, Kiani J, McConnell M, Lerakis S, Butler J, Martin RP, Book WM (2012) Right ventricular function with standard and speckle-tracking echocardiography and clinical events in adults with D-transposition of the great arteries post atrial switch. J Am Soc Echocardiogr 25(3):304–312.  https://doi.org/10.1016/j.echo.2011.12.003 CrossRefGoogle Scholar
  23. 23.
    Colquitt JL, Pignatelli RH (2016) Strain imaging: the emergence of speckle tracking echocardiography into clinical pediatric cardiology. Congenit Heart Dis 11(2):199–207.  https://doi.org/10.1111/chd.12334 CrossRefGoogle Scholar
  24. 24.
    Alghamdi MH, Mertens L, Lee W, Yoo SJ, Grosse-Wortmann L (2013) Longitudinal right ventricular function is a better predictor of right ventricular contribution to exercise performance than global or outflow tract ejection fraction in tetralogy of Fallot: a combined echocardiography and magnetic resonance study. Eur Heart J Cardiovasc Imaging 14(3):235–239.  https://doi.org/10.1093/ehjci/jes137 CrossRefGoogle Scholar
  25. 25.
    Brida M, Diller GP, Gatzoulis MA (2018) Systemic right ventricle in adults with congenital heart disease: anatomic and phenotypic spectrum and current approach to management. Circulation 137(5):508–518.  https://doi.org/10.1161/CIRCULATIONAHA.117.031544 CrossRefGoogle Scholar
  26. 26.
    Iriart X, Roubertie F, Jalal Z, Thambo JB (2016) Quantification of systemic right ventricle by echocardiography. Arch Cardiovasc Dis 109(2):120–127.  https://doi.org/10.1016/j.acvd.2015.11.008 CrossRefGoogle Scholar
  27. 27.
    Ladouceur M, Redheuil A, Soulat G, Delclaux C, Azizi M, Patel M, Chatellier G, Legendre A, Iserin L, Boudjemline Y, Bonnet D, Mousseaux E, Investigators S (2016) Longitudinal strain of systemic right ventricle correlates with exercise capacity in adult with transposition of the great arteries after atrial switch. International journal of cardiology 217:28–34.  https://doi.org/10.1016/j.ijcard.2016.04.166 CrossRefGoogle Scholar
  28. 28.
    Lipczynska M, Szymanski P, Kumor M, Klisiewicz A, Mazurkiewicz L, Hoffman P (2015) Global longitudinal strain may identify preserved systolic function of the systemic right ventricle. Can J Cardiol 31(6):760–766.  https://doi.org/10.1016/j.cjca.2015.02.028 CrossRefGoogle Scholar
  29. 29.
    Koopman LP, Slorach C, Hui W, Manlhiot C, McCrindle BW, Friedberg MK, Jaeggi ET, Mertens L (2010) Comparison between different speckle tracking and color tissue Doppler techniques to measure global and regional myocardial deformation in children. J Am Soc Echocardiogr 23(9):919–928.  https://doi.org/10.1016/j.echo.2010.06.014 CrossRefGoogle Scholar
  30. 30.
    Nagata Y, Takeuchi M, Mizukoshi K, Wu VC, Lin FC, Negishi K, Nakatani S, Otsuji Y (2015) Intervendor variability of two-dimensional strain using vendor-specific and vendor-independent software. J Am Soc Echocardiogr 28(6):630–641.  https://doi.org/10.1016/j.echo.2015.01.021 CrossRefGoogle Scholar
  31. 31.
    Yang H, Marwick TH, Fukuda N, Oe H, Saito M, Thomas JD, Negishi K (2015) Improvement in strain concordance between two major vendors after the strain standardization initiative. J Am Soc Echocardiogr 28(6):642–648 e647.  https://doi.org/10.1016/j.echo.2014.12.009 CrossRefGoogle Scholar
  32. 32.
    Shiino K, Yamada A, Ischenko M, Khandheria BK, Hudaverdi M, Speranza V, Harten M, Benjamin A, Hamilton-Craig CR, Platts DG, Burstow DJ, Scalia GM, Chan J (2017) Intervendor consistency and reproducibility of left ventricular 2D global and regional strain with two different high-end ultrasound systems. Eur Heart J Cardiovasc Imaging 18(6):707–716.  https://doi.org/10.1093/ehjci/jew120 Google Scholar
  33. 33.
    Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, Pedri S, Ito Y, Abe Y, Metz S, Song JH, Hamilton J, Sengupta PP, Kolias TJ, d’Hooge J, Aurigemma GP, Thomas JD, Badano LP (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28(2):183–193.  https://doi.org/10.1016/j.echo.2014.11.003 CrossRefGoogle Scholar
  34. 34.
    Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23(5):465–495.  https://doi.org/10.1016/j.echo.2010.03.019 quiz 576 – 467.CrossRefGoogle Scholar
  35. 35.
    Colan SD, Borow KM, Neumann A (1984) Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol 4(4):715–724CrossRefGoogle Scholar
  36. 36.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefGoogle Scholar
  37. 37.
    Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163.  https://doi.org/10.1016/j.jcm.2016.02.012 CrossRefGoogle Scholar
  38. 38.
    Pignatelli RH, Ghazi P, Reddy SC, Thompson P, Cui Q, Castro J, Okcu MF, Jefferies JL (2015) Abnormal myocardial strain indices in children receiving anthracycline chemotherapy. Pediatr Cardiol 36(8):1610–1616.  https://doi.org/10.1007/s00246-015-1203-8 CrossRefGoogle Scholar
  39. 39.
    Spurney CF, McCaffrey FM, Cnaan A, Morgenroth LP, Ghelani SJ, Gordish-Dressman H, Arrieta A, Connolly AM, Lotze TE, McDonald CM, Leshner RT, Clemens PR (2015) Feasibility and reproducibility of echocardiographic measures in children with muscular dystrophies. J Am Soc Echocardiogr 28(8):999–1008.  https://doi.org/10.1016/j.echo.2015.03.003 CrossRefGoogle Scholar
  40. 40.
    Raman SV, Hor KN, Mazur W, He X, Kissel JT, Smart S, McCarthy B, Roble SL, Cripe LH (2017) Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: results of a two-year open-label extension trial. Orphanet journal of rare diseases 12(1):39.  https://doi.org/10.1186/s13023-017-0590-8 CrossRefGoogle Scholar
  41. 41.
    Muraru D, Onciul S, Peluso D, Soriani N, Cucchini U, Aruta P, Romeo G, Cavalli G, Iliceto S, Badano LP (2016) Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging 9(2):e003866.  https://doi.org/10.1161/CIRCIMAGING.115.003866 CrossRefGoogle Scholar
  42. 42.
    Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC (2015) Reference values for right ventricular strain in patients without cardiopulmonary disease: a prospective evaluation and meta-analysis. Echocardiography 32(5):787–796.  https://doi.org/10.1111/echo.12806 CrossRefGoogle Scholar
  43. 43.
    Tadic M, Pieske-Kraigher E, Cuspidi C, Morris DA, Burkhardt F, Baudisch A, Hassfeld S, Tschope C, Pieske B (2017) Right ventricular strain in heart failure: clinical perspective. Arch Cardiovasc Dis.  https://doi.org/10.1016/j.acvd.2017.05.002 Google Scholar
  44. 44.
    Goudar SP, Baker GH, Chowdhury SM, Reid KJ, Shirali G, Scheurer MA (2016) Interpreting measurements of cardiac function using vendor-independent speckle tracking echocardiography in children: a prospective, blinded comparison with catheter-derived measurements. Echocardiography 33(12):1903–1910.  https://doi.org/10.1111/echo.13347 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Pascal Amedro
    • 1
    • 2
  • Charlene Bredy
    • 1
  • Sophie Guillaumont
    • 1
    • 5
  • Gregoire De La Villeon
    • 1
    • 5
  • Lucie Gamon
    • 3
  • Kathleen Lavastre
    • 1
  • Albano C. Meli
    • 2
  • Sylvain Richard
    • 2
  • Olivier Cazorla
    • 2
  • Alain Lacampagne
    • 2
  • Thibault Mura
    • 3
    • 4
  • Marie Vincenti
    • 1
    • 2
    • 5
  1. 1.Pediatric and Congenital Cardiology DepartmentM3C Regional Reference CHD Center, Montpellier University Hospital, CHU MontpellierMontpellierFrance
  2. 2.PHYMEDEXP, University of Montpellier, CNRS, INSERMMontpellierFrance
  3. 3.Epidemiology and Clinical Research DepartmentUniversity HospitalMontpellierFrance
  4. 4.Clinical Investigation Center, University of Montpellier, INSERMMontpellierFrance
  5. 5.Pediatric Cardiology and Rehabilitation UnitSt-Pierre InstitutePalavas-Les-FlotsFrance

Personalised recommendations