Advertisement

Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience

Abstract

To evaluate the qualitative and quantitative performance of an accelerated cardiovascular MRI (CMR) protocol that features iterative SENSE reconstruction and spatio-temporal L1-regularization (IS SENSE). Twenty consecutively recruited patients and 9 healthy volunteers were included. 2D steady state free precession cine images including 3-chamber, 4-chamber, and short axis slices were acquired using standard parallel imaging (GRAPPA, acceleration factor = 2), spatio-temporal undersampled TSENSE (acceleration factor = 4), and IS SENSE techniques (acceleration factor = 4). Acquisition times, quantitative cardiac functional parameters, wall motion abnormalities (WMA), and qualitative performance (scale: 1-poor to 5-excellent for overall image quality, noise, and artifact) were compared. Breath-hold times for IS SENSE (3.0 ± 0.6 s) and TSENSE (3.3 ± 0.6) were both reduced relative to GRAPPA (8.4 ± 1.7 s, p < 0.001). No difference in quantitative cardiac function was present between the three techniques (p = 0.89 for ejection fraction). GRAPPA and IS SENSE had similar image quality (4.7 ± 0.4 vs. 4.5 ± 0.6, p = 0.09) while, both techniques were superior to TSENSE (quality: 4.1 ± 0.7, p < 0.001). GRAPPA WMA agreement with IS SENSE was good (κ > 0.60, p < 0.001), while agreement with TSENSE was poor (κ < 0.40, p < 0.001). IS SENSE is a viable clinical CMR acceleration approach to reduce acquisition times while maintaining satisfactory qualitative and quantitative performance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90(1):29–34

  2. 2.

    Chuang ML, Hibberd MG, Salton CJ, Beaudin RA, Riley MF, Parker RA, Douglas PS, Manning WJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35(2):477–484

  3. 3.

    Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM (2010) Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 257(1):71–79

  4. 4.

    Tsao J, Kozerke S (2012) MRI temporal acceleration techniques. J Magn Reson Imaging 36(3):543–560. doi:10.1002/jmri.23640

  5. 5.

    Lanzer P, Botvinick EH, Schiller NB, Crooks LE, Arakawa M, Kaufman L, Davis PL, Herfkens R, Lipton MJ, Higgins CB (1984) Cardiac imaging using gated magnetic resonance. Radiology 150(1):121–127. doi:10.1148/radiology.150.1.6227934

  6. 6.

    Wang Y, Grimm RC, Rossman PJ, Debbins JP, Riederer SJ, Ehman RL (1995) 3D coronary MR angiography in multiple breath-holds using a respiratory feedback monitor. Magn Reson Med 34(1):11–16

  7. 7.

    Slomka PJ, Fieno D, Ramesh A, Goyal V, Nishina H, Thompson LE, Saouaf R, Berman DS, Germano G (2007) Patient motion correction for multiplanar, multi-breath-hold cardiac cine MR imaging. J Magn Reson Imaging 25(5):965–973. doi:10.1002/jmri.20909

  8. 8.

    Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219(3):828–834. doi:10.1148/radiology.219.3.r01jn44828

  9. 9.

    Niendorf T, Sodickson DK (2006) Parallel imaging in cardiovascular MRI: methods and applications. NMR Biomed 19(3):325–341. doi:10.1002/nbm.1051

  10. 10.

    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

  11. 11.

    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210. doi:10.1002/mrm.10171

  12. 12.

    Kellman P, Epstein FH, McVeigh ER (2001) Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 45(5):846–852

  13. 13.

    Breuer FA, Kellman P, Griswold MA, Jakob PM (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53(4):981–985. doi:10.1002/mrm.20430

  14. 14.

    Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50(5):1031–1042

  15. 15.

    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195. doi:10.1002/mrm.21391

  16. 16.

    Otazo R, Kim D, Axel L, Sodickson DK (2010) Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med 64(3):767–776. doi:10.1002/mrm.22463

  17. 17.

    Kim D, Dyvorne HA, Otazo R, Feng L, Sodickson DK, Lee VS (2012) Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE. Magn Reson Med 67(4):1054–1064. doi:10.1002/mrm.23088

  18. 18.

    Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EV, Sodickson DK, Otazo R, Kim D (2013) Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 70(1):64–74. doi:10.1002/mrm.24440

  19. 19.

    Kannengiesser SAR, Brenner A, Noll TG (2000) Accelerated image reconstruction for sensitivity encoded imaging with arbitrary k–space trajectories. In: Proceedings of 8th annual meeting of ISMRM, Denver, p 155

  20. 20.

    Liu J, Rapin J, Chang T-C, Lefebvre A, Zenge M, Mueller E, Nadar MS (2012) Dynamic cardiac MRI reconstruction with weighted redundant Haar wavelets. In: ISMRM 20th annual meeting, Melbourne, Australia, p 4249

  21. 21.

    Kaji S, Yang PC, Kerr AB, Tang WH, Meyer CH, Macovski A, Pauly JM, Nishimura DG, Hu BS (2001) Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 38(2):527–533

  22. 22.

    Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B (2013) k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med. doi:10.1002/mrm.24925

  23. 23.

    Stadlbauer A, van der Riet W, Crelier G, Salomonowitz E (2010) Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. Eur J Radiol 75(1):e15–e21. doi:10.1016/j.ejrad.2009.06.009

  24. 24.

    Gabriel RS, Kerr AJ, Raffel OC, Stewart RA, Cowan BR, Occleshaw CJ (2008) Mapping of mitral regurgitant defects by cardiovascular magnetic resonance in moderate or severe mitral regurgitation secondary to mitral valve prolapse. J Cardiovasc Magn Reson 10:16. doi:10.1186/1532-429x-10-16

  25. 25.

    Karamitsos TD, Myerson SG (2011) The role of cardiovascular magnetic resonance in the evaluation of valve disease. Prog Cardiovasc Dis 54(3):276–286. doi:10.1016/j.pcad.2011.08.005

  26. 26.

    Akçakaya M, Basha TA, Chan RH, Manning WJ, Nezafat R (2014) Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging. Magn Reson Med 71(2):815–822. doi:10.1002/mrm.24683

  27. 27.

    Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59(2):365–373. doi:10.1002/mrm.21477

  28. 28.

    Miao J, Guo W, Narayan S, Wilson DL (2013) A simple application of compressed sensing to further accelerate partially parallel imaging. Magn Reson Imaging 31(1):75–85. doi:10.1016/j.mri.2012.06.028

Download references

Author information

Correspondence to Bradley D. Allen.

Ethics declarations

Conflict of interest

Authors MOZ, MS, MSN, and BS are employees of Siemens Healthcare. Authors BA, MC, MPFB, AAR, MM, JDC, and JCC all declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study except in cases where informed consent was waived by the local institutional review board.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 669 kb)

Supplementary material 2 (WMV 567 kb)

Supplementary material 3 (WMV 676 kb)

Supplementary material 1 (WMV 669 kb)

Supplementary material 2 (WMV 567 kb)

Supplementary material 3 (WMV 676 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allen, B.D., Carr, M., Botelho, M.P.F. et al. Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience. Int J Cardiovasc Imaging 32, 955–963 (2016). https://doi.org/10.1007/s10554-016-0859-3

Download citation

Keywords

  • Cardiac magnetic resonance imaging
  • Accelerated MRI
  • Cardiac gated imaging techniques
  • Ventricular function