Skip to main content

Advertisement

Log in

Diagnostic accuracy of first generation dual-source computed tomography in the assessment of coronary artery disease: a meta-analysis from 24 studies

  • Review
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate the diagnostic accuracy of the first generation dual-source computed tomography (DSCT) in the diagnosis of coronary artery disease (CAD). We selected articles from four databases (Pubmed, Embase, the Cochrane central register of controlled trials (CENTRAL) and Chinese biomedical literature database. The strict study selection was made, and two reviewers independently extracted data back-to-back from included studies. Meta-Disc version 1.4 was used to obtain the pooled results. 24 studies were included in meta-analysis. A cut off point of ≥50% stenosis was used in all the studies to define significant coronary artery stenosis. In patient-based analysis (n = 801), pooled sensitivity was 0.980 [95% confidence interval (CI):0.970–0.990], specificity 0.870 (95% CI: 0.830–0.900), median positive predictive value (PPV) across studies 0.876 (range from 0.741 to 0.943) and negative predictive value (NPV) 0.964 (range from 0.900 to 1.000). In vessel-based analysis (n = 3,620) DSCT pooled sensitivity was 0.957 (95% CI: 0.943–0.969), specificity 0.930 (95% CI: 0.910–0.940), median PPV across studies 0.838 (range from 0.534 to 0.964) and NPV 0.973 (range from 0.885 to 0.996). In segment-based analysis (n = 6,177) DSCT pooled sensitivity was 0.915 (95% CI: 0.901–0.928), specificity 0.959 (95% CI: 0.956–0.963), median PPV 0.782 (range from 0.320 to 0.927) and NPV 0.985 (range from 0.929 to 0.999). In subgroups analysis, pooled sensitivity and specificity in segment based analysis were 93.1 and 92.3% when heart rate (HR) is beyond 70 bpm; when HR was below 70 bpm, the sensitivity was similar (93%), but specificity increased a little from 92.3 to 94%. When analysed based on segment with a cut-off calcium score of 400, the sensitivity was slightly higher in the subgroup with a score over 400 than in the subgroup with a score below 400 (94 vs. 91%), while the specificity was much lower in the subgroup with the high calcium score than the subgroup with the low calcium score (85 vs. 96%). For subgroups with heart rate beyond and below 65 bpm in patient-based analysis, sensitivities were 0.95 (95% CI: 0.86–0.99) and 0.98 (95% CI 0.91–1.00), respectively, while the specificities were 0.88 (95% CI 0.81–0.94) and 0.85 (95% CI 0.77–0.91), respectively. The area under the receiver operating characteristic curve (AUC) in the two subgroups were 0.9608 and 0.9786, respectively. DSCT is highly sensitive for patient-based analysis of CAD and has high specificity and NPV for segment-based analysis of CAD. First generation DSCT may have a role in the evaluation of patients with chest pain as a simple non-invasive examination because of its ability to diagnose or exclude significant CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohnesorge B, Flohr T, Becker C, Kopp AF, Schoepf UJ, Baum U, Knez A, Klingenbeck-Regn K, Reiser MF (2000) Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 217(2):564–571

    PubMed  CAS  Google Scholar 

  2. Kachelriess M, Ulzheimer S, Kalender WA (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27(8):1881–1902

    Article  PubMed  CAS  Google Scholar 

  3. Taguchi K, Anno H (2000) High temporal resolution for multislice helical computed tomography. Med Phys 27(5):861–872

    Article  PubMed  CAS  Google Scholar 

  4. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Kuttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    Article  PubMed  Google Scholar 

  5. Brodoefel H, Burgstahler C, Tsiflikas I, Reimann A, Schroeder S, Claussen CD, Heuschmid M, Kopp AF (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247(2):346–355

    Article  PubMed  Google Scholar 

  6. Scheffel H, Alkadhi H, Leschka S, Plass A, Desbiolles L, Guber I, Krauss T, Gruenenfelder J, Genoni M, Luescher TF, Marincek B, Stolzmann P (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94(9):1132–1137

    Article  PubMed  CAS  Google Scholar 

  7. Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, Grunenfelder J, Genoni M, Kaufmann PA, Marincek B, Leschka S (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747

    Article  PubMed  Google Scholar 

  8. Weustink AC, Meijboom WB, Mollet NR, Otsuka M, Pugliese F, van Mieghem C, Malago R, van Pelt N, Dijkshoorn ML, Cademartiri F, Krestin GP, de Feyter PJ (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50(8):786–794

    Article  PubMed  Google Scholar 

  9. Plass A, Azemaj N, Scheffel H, Desbiolles L, Alkadhi H, Genoni M, Falk V, Grunenfelder J (2009) Accuracy of dual-source computed tomography coronary angiography: evaluation with a standardised protocol for cardiac surgeons. Eur J Cardiothorac Surg 36(6):1011–1017

    Article  PubMed  Google Scholar 

  10. Oncel D, Oncel G, Tastan A (2007) Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience. Radiology 245(3):703–711

    Article  PubMed  Google Scholar 

  11. Rist C, Johnson TR, Muller-Starck J, Arnoldi E, Saam T, Becker A, Leber AW, Wintersperger BJ, Becker CR, Reiser MF, Nikolaou K (2009), Noninvasive coronary angiography using dual-source computed tomography in patients with atrial fibrillation. Invest Radiol

  12. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, Reiser M, Steinbeck G, Becker CR, Knez A (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28(19):2354–2360

    Article  PubMed  Google Scholar 

  13. Meng L, Cui L, Cheng Y, Wu X, Tang Y, Wang Y, Xu F (2009) Effect of heart rate and coronary calcification on the diagnostic accuracy of the dual-source CT coronary angiography in patients with suspected coronary artery disease. Korean J Radiol 10(4):347–354

    Article  PubMed  Google Scholar 

  14. Fang XM, Chen HW, Hu XY, Bao J, Chen Y, Yang ZY, Buckley O, Wu XQ (2009) Dual-source CT coronary angiography without heart rate or rhythm control in comparison with conventional coronary angiography. Int J Cardiovasc Imaging

  15. Johnson TRC, Nikolaou K, Busch S, Leber AW, Becker A, Wintersperger BJ, Rist C, Knez A, Reiser MF, Becker CR (2007) Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest Radiol 42(10):684–691

    Article  PubMed  Google Scholar 

  16. Tsiflikas I, Drosch T, Brodoefel H, Thomas C, Reimann A, Till A, Nittka D, Kopp AF, Schroeder S, Heuschmid M, Burgstahler C (2009) Diagnostic accuracy and image quality of cardiac dual-source computed tomography in patients with arrhythmia. Int J Cardiol

  17. Rixe J, Rolf A, Conradi G, Moellmann H, Nef H, Neumann T, Steiger H, Hamm CW, Dill T (2009) Detection of relevant coronary artery disease using dual-source computed tomography in a high probability patient series: comparison with invasive angiography. Circulation Journal 73(2):316–322

    Article  PubMed  Google Scholar 

  18. Tsiflikas I, Brodoefel H, Reimann A J, Thomas C, Ketelsen D, Schroeder S, Kopp AF, Claussen CD, Burgstahler C, Heuschmid M (2009) Coronary CT angiography with dual source computed tomography in 170 patients. Eur J Radiol

  19. Piers LH, Dikkers R, Willems TP, de Smet BJ, Oudkerk M, Zijlstra F, Tio RA (2008) Computed tomographic angiography or conventional coronary angiography in therapeutic decision-making. Eur Heart J 29(23):2902–2907

    Article  PubMed  Google Scholar 

  20. Alkadhi H, Scheffel H, Desbiolles L, Gaemperli O, Stolzmann P, Plass A, Goerres GW, Luescher TF, Genoni M, Marincek B, Kaufmann PA, Leschka S (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29(6):766–776

    Article  PubMed  Google Scholar 

  21. Weustink AC, Mollet NR, Neefjes LA, van Straten M, Neoh E, Kyrzopoulos S, Meijboom BW, van Mieghem C, Cademartiri F, de Feyter PJ, Krestin GP (2009) Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology 252(1):53–60

    Article  PubMed  Google Scholar 

  22. Ropers U, Ropers D, Pflederer T, Anders K, Kuettner A, Stilianakis NI, Komatsu S, Kalender W, Bautz W, Daniel WG, Achenbach S (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50(25):2393–2398

    Article  PubMed  Google Scholar 

  23. Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Stolzmann P, Genoni M, Luescher T, Marincek B, Kaufmann P, Alkadhi H (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94(9):1154–1161

    Article  PubMed  CAS  Google Scholar 

  24. Heuschmid M, Burgstahler C, Reimann A, Brodoefel H, Mysal I, Haeberle E, Tsiflikas I, Claussen CD, Kopp AF, Schroeder S (2007) Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol 100(4):587–592

    Article  PubMed  Google Scholar 

  25. Brodoefel H, Tsiflikas I, Burgstahler C, Reimann A, Thomas C, Schroeder S, Kopp AF, Claussen CD, Heuschmid M (2008) Cardiac dual-source computed tomography: effect of body mass index on image quality and diagnostic accuracy. Invest Radiol 43(10):712–718

    Article  PubMed  Google Scholar 

  26. Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X, Hillis GS, Fraser C (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12(17):iii–iv (ix–143)

    Google Scholar 

  27. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56(11):1129–1135

    Article  PubMed  Google Scholar 

  28. Walter SD (2002) Properties of the summary receiver operating characteristic (SROC) curve for diagnostic test data. Stat Med 21(9):1237–1256

    Article  PubMed  CAS  Google Scholar 

  29. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    PubMed  CAS  Google Scholar 

  30. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58(10):982–990

    Article  PubMed  Google Scholar 

  31. Lijmer JG, Bossuyt PM, Heisterkamp SH (2002) Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med 21(11):1525–1537

    Article  PubMed  Google Scholar 

  32. Moses LE, Shapiro D, Littenberg B (1993) Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med 12(14):1293–1316

    Article  PubMed  CAS  Google Scholar 

  33. Littenberg B, Moses LE (1993) Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method. Med Decis Making 13(4):313–321

    Article  PubMed  CAS  Google Scholar 

  34. Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, Mosteller F (1994) Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 120(8):667–676

    PubMed  CAS  Google Scholar 

  35. Tao Pan, Jianbin Gong, Hua Guo, Liang Z (2007) Correlation of TCM Syndrome Differentiation and Image of Dual—source Computed Tomography in Coronary Heart Disease. Chinese Journal of Integrative Medicine on Cardio Cerebrovascular Disease 5(10):914–916

    Google Scholar 

  36. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336

    Article  PubMed  CAS  Google Scholar 

  37. Shen JF, Tian W, Li PL, Qi GX (2008), Value of dual-source CT in diagnosis and risks tratification of coronary artery disease. Shandong Med J (37)

  38. Dietz U, Rupprecht HJ, Brennecke R, Fritsch HP, Woltmann J, Blankenberg S, Meyer J (1997) Comparison of QCA systems. Int J Card Imaging 13(4):271–280

    Article  PubMed  CAS  Google Scholar 

  39. Schuijf JD, Pundziute G, Jukema JW, Lamb HJ, van der Hoeven BL, de Roos A, van der Wall EE, Bax JJ (2006) Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 98(2):145–148

    Article  PubMed  Google Scholar 

  40. Ropers D, Rixe J, Anders K, Kuttner A, Baum U, Bautz W, Daniel WG, Daniel WG, Achenbach S (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97(3):343–348

    Article  PubMed  Google Scholar 

  41. Pugliese F, Mollet NR, Runza G, van Mieghem C, Meijboom WB, Malagutti P, Baks T, Krestin GP, de Feyter PJ, Cademartiri F (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16(3):575–582

    Article  PubMed  Google Scholar 

  42. Ong TK, Chin SP, Liew CK, Chan WL, Seyfarth MT, Liew HB, Rapaee A, Fong YY, Ang CK, Sim KH (2006) Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 151(6):1323e1–1323e6

    Google Scholar 

  43. Nikolaou K, Knez A, Rist C, Wintersperger BJ, Leber A, Johnson T, Reiser MF, Becker CR (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187(1):111–117

    Article  PubMed  Google Scholar 

  44. Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T, Serruys PW, Krestin GP, de Feyter PJ (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–2323

    Article  PubMed  Google Scholar 

  45. Meijboom WB, Mollet NR, Van Mieghem CA, Kluin J, Weustink AC, Pugliese F, Vourvouri E, Cademartiri F, Bogers AJ, Krestin GP, de Feyter PJ (2006) Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 48(8):1658–1665

    Article  PubMed  Google Scholar 

  46. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, Wildermuth S (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26(15):1482–1487

    Article  PubMed  Google Scholar 

  47. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154

    Article  PubMed  Google Scholar 

  48. Ghostine S, Caussin C, Daoud B, Habis M, Perrier E, Pesenti-Rossi D, Sigal-Cinqualbre A, Angel CY, Lancelin B, Capderou A, Paul JF (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48(10):1929–1934

    Article  PubMed  Google Scholar 

  49. Ehara M, Surmely JF, Kawai M, Katoh O, Matsubara T, Terashima M, Tsuchikane E, Kinoshita Y, Suzuki T, Ito T, Takeda Y, Nasu K, Tanaka N, Murata A, Suzuki Y, Sato K (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70(5):564–571

    Article  PubMed  Google Scholar 

  50. Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18(6):1188–1198

    Article  PubMed  Google Scholar 

  51. Leschka S, Stolzmann P, Desbiolles L, Baumueller S, Goetti R, Schertler T, Scheffel H, Plass A, Falk V, Feuchtner G, Marincek B, Alkadhi H (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol

  52. Mowatt GCE, Waugh N, Walker S, Cook J, Jia X, Hillis GS, Fraser C (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12(17):iii–iv (ix–143)

    Google Scholar 

Download references

Acknowledgments

Theoretical support was given by Evidence Based Medical Center of Lanzhou University. Thanks Professor Kehu Yang, teacher Bin Ma and all the colleagues for their help on this work. Thanks Professor Yonglin Pu and his daughter Angel Pu for modifying language mistakes in our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Min Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, SL., Guo, YM., Zhai, YN. et al. Diagnostic accuracy of first generation dual-source computed tomography in the assessment of coronary artery disease: a meta-analysis from 24 studies. Int J Cardiovasc Imaging 27, 755–771 (2011). https://doi.org/10.1007/s10554-010-9690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9690-4

Keywords

Navigation