Chemistry and Technology of Fuels and Oils

, Volume 55, Issue 5, pp 584–589 | Cite as

Alternative Methods for the Removal of Sulfur Compounds from Petroleum Fractions

  • Yu. N. Kitashov
  • A. V. Nazarov
  • E. I. ZoryaEmail author
  • A. V. Muradov

Alternative methods are examined for the removal of sulfur compounds from hydrocarbon fractions in order to meet the strict specifications for sulfur content and reduce the sulfur content in petroleum raw material. The advantages of such alternative sulfur removal methods include low temperature and pressure, no need for introducing hydrogen, and feasibility for small refineries. Two types of methods were examined. One type involves the use of adsorbents, selective solvents, oxidizing agents, and biodesulfilrization. The other group involves wave technologies based on electric pulse effects, cavitation, hydrowave, magnetic, and electromagnetic effects as well as combined wave technologies. The most effective methods for desulfurization yield fuel components corresponding to ecology class 5.

Key words

sulfur compounds quality indicators ofpetroleum products sulfirrcontaining components wave technologies 


  1. 1.
    V. M. Kapustin and A. A. Gureev, The Technology of Petroleum Refining. Part 2. Physicochemical Processes [in Russian], Khimiya, Moscow (2015).Google Scholar
  2. 2.
    Requirements TR TS 013/2011. Requirements for Automobile andAviation Gasoline, Diesel and Marine Fuel, Jet Fuel, and Fuel Oil [in Russian].Google Scholar
  3. 3.
    A. Mansouri, A. A. Khodadacli, and Y. A. Morazavi, J. Hazard. Mater., 271, 120-130 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. Sbi, G. Liu, L. Wang, et al., Chem. Eng. J., 259, 771-778 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Sevignon, M. Macaud, A. FavreReguillon, et al., Green Chem., 7,413-420 (2005).CrossRefGoogle Scholar
  6. 6.
    F. Bashagh, B. Mokhtarani, and H. R. Mortaheb, J. Hazard. Mater, 280, 781-787 (2014).CrossRefGoogle Scholar
  7. 7.
    W. N.A. W. Moklitar, W. A. W. A. Bakar, K. Ali, et al., J. Taiwan Inst. Chem. Eng., 45,1542-1548 (2014).CrossRefGoogle Scholar
  8. 8.
    U. Domanska, K. Walczak, and M. Krolikowski, J. Chan. Thermodyn., 77, 4045 (2014).Google Scholar
  9. 9.
    M. Krohlowski, K. Walczak, and U. Domanska, J. Chem. Thermocbm., 65, 168-173 (2013).CrossRefGoogle Scholar
  10. 10.
    M. Zbang, W. Zhu, S. Xun, et al., Chem. Eng. J., 220, 328-336 (2013).CrossRefGoogle Scholar
  11. 11.
    C. Ma, B. Dai, P. Liu, et al., .J. Ind. Eng. Chem., 20, 2769-2774 (2014).CrossRefGoogle Scholar
  12. 12.
    Removal of Sulfur from Petroleum and Petroleum Products by Hvdrowave Technology [in Russia], Oil & Gas Eurasia, No. 4,12-13 (2009).Google Scholar
  13. 13.
    V. G Sister and E. S. Gridieva, Khimicheskoe i Neftegazovoe Mashinosnreenie, No. 4, 20-22 (2009).Google Scholar
  14. 14.
    V. G. Sister, O. V. Abramov, and E. S. Gridieva, Khimicheskoe i Neftegazovoe Mashinostroenie, No. 1, 4-6 (21309).Google Scholar
  15. 15.
    E. S. Gridieva, V. G Sister, and O. V. Abramov, Khimicheskoe i Nefiegazovoe Mashinostroenie, No. 2, 10-11(2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. N. Kitashov
    • 1
  • A. V. Nazarov
    • 1
  • E. I. Zorya
    • 1
    Email author
  • A. V. Muradov
    • 1
  1. 1.I. M. Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations