Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 55, Issue 5, pp 552–556 | Cite as

Oxidative Cleavage of Asphaltenes Under Mild Conditions

  • D. N. Borisov
  • L. E. FossEmail author
  • K. V. Shabalin
  • L I Musin
  • R. Z. Musin
Article
  • 34 Downloads

Products from oxidation of asphaltenes by peracetic acid, sodium periodate, and potassium iodate were analyzed using IR spectroscopy and mass spectrometry. Oxidative destruction of asphaltenes increased the aromaticity in their molecular structures and the branching of aliphatic substituents on the polycondensed core. Occluded low-molecular-mass alkanes and cycloalkanes were released during the oxidation. The molecular mass of the asphaltenes changed as a function of the oxidant strength. Asphaltenes fragmented by the acetylene mechanism if the soft oxidant KIO3 was used.

Keywords

asphaltenes oxidation spectral coefficients gas chromatography-mass spectrometry molecular-mass distribution 

Notes

Acknowledgments

The work was performed in the framework of a state task to FRC KazSC RAS. We thank staff members of the Distributed Collective Spectral Analytical Center for Studies of the Structure, Composition, and Properties of Compounds and Materials, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, for assistance with the research.

References

  1. 1.
    J. W. Bunger and N. C. Li, Chemistry of Asphaltenes. Advances in Chemistry Series 195, American Chemical Society, Washington, 1981, 260 pp.Google Scholar
  2. 2.
    S. A. Akhmetov, Deep Processing Technology for Oil and Gas [in Russian], Gilem, Ufa, 2002, 672 pp.Google Scholar
  3. 3.
    J. Hayashi and T. Chiba, Energy Fuels, 13, 1230-1238 (1999).CrossRefGoogle Scholar
  4. 4.
    D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman, New York, 2010, 892 pp.Google Scholar
  5. 5.
    X. Wang, J. Wu, M. Zhao, et al., J. Phys. Chem. C, 113, 14270-14278 (2009).CrossRefGoogle Scholar
  6. 6.
    T. M. A. Shaikh, L. Emmanuvel, and L. Sudalai, J. Org. Chem., 71, 5043-5046 (2006).CrossRefGoogle Scholar
  7. 7.
    M. R. Yakubov, S. G. Yakubova, D. N. Borisov, et al., Chem. Technol. Fuels Oils, 51, 222-230 (2015).CrossRefGoogle Scholar
  8. 8.
    M. R. Yakubov, P. I. Gryaznov, S. G. Yakubova, et al., Pet. Sci. Technol., 34, 1805-1811 (2016).CrossRefGoogle Scholar
  9. 9.
    L. E. Foss, G. P. Kayukova, B. P. Tumanyan, et al., Pet. Sci. Technol., 53, 173-180 (2017).Google Scholar
  10. 10.
    J. Clayden, N. Greeves, and S. Warren, Organic Chemistry, Oxford University Press, New York, 2012, 1261 pp.Google Scholar
  11. 11.
    V. G. Santos, M. Fasciotti, M. A. Pudenzi, et al., Analyst, 141, 2767-2773 (2016).CrossRefGoogle Scholar
  12. 12.
    A. T. Lebedev, Mass Spectrometry in Organic Chemistry [in Russian], Binom, Moscow, 2003, 493 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. N. Borisov
    • 1
  • L. E. Foss
    • 1
    Email author
  • K. V. Shabalin
    • 1
  • L I Musin
    • 1
  • R. Z. Musin
    • 2
  1. 1.Federal Research Center, Kazan Scientific CenterRussianAcademy of SciencesKazanRussia
  2. 2.A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC, Kazan Scientific Center, RASKazanRussia

Personalised recommendations