Advertisement

\( \mathrm{NiMo}/{\mathrm{WO}}_4^{2-}/{\mathrm{ZrO}}_2 \),-Zeolite-Containing Hydrodearomatization Catalyst for Improving the Operating and Environmental Characteristics of Diesel Fuel

  • A. V. YusovskiiEmail author
  • A. K. Gabbasova
  • V. O. Koshevoi
  • R. E. Boldushevskii
  • A. I. Guseva
  • P. A. Nikurshin
Article
  • 5 Downloads

A zeolite-containing diesel-fuel dearomatization catalyst was prepared using synthesized tungsten-doped zirconia \( {\mathrm{WO}}_4^{2-} \)/ZrO2 and an Ni—Mo complex. The catalyst was tested for diesel fuel dearomatization at 4.5 MPa, feedstock input volume flow rate 1.5 h-1, H2/feedstock volume ratio 1000 nm3/m3, and temperature range 270-330°C. The highest conversion (78.8%) of polycyclic aromatic hydrocarbons and greatest cetane number were attained at 290°C. Also, the cloud and pour points of the diesel fuel decreased by 23-25°C because of cracking at 310-330°C and extensive isomerization at 290°C. This was confirmed by the yields of target diesel fraction of 69.8-72.9 and 89.2 wt. %, respectively.

Keywords

hydrodearomatization hydrogenation selective naphthene ring opening zeolite UST zeolite Beta Ni—Mo catalyst diesel fuel 

Notes

Acknowledgments

The work was financially supported by the Russian Science Foundation in the framework of Project No. 17-73-20386.

References

  1. 1.
    Decision of the Customs Union Commission of Oct. 18, 2001, No. 826 (as Amended on Jun. 25, 2014) "On adoption of the Customs Union Technical Regulation 'On requirements for automobile and aviation gasoline, diesel, and ship fuel, fuel for reactive engines and fuel oil'" (together with "TR TS 013/2011. Customs Union Technical Regulation. On requirements for automobile and aviation gasoline, diesel, and ship fuel, fuel for reactive engines, and fuel oil").Google Scholar
  2. 2.
    V. A. Khavkin, L. A. Gulyaeva, V. P. Tomin, et al., Netepererab. Neftekhim., No. 11, 18-22 (2016).Google Scholar
  3. 3.
    C. Song and X. Ma, Appl. Carat, B, No. 41, 207-238 (2003).Google Scholar
  4. 4.
    On approval of the Plan of Action for Import-substitution in the Oil Refining and Petrochemical Industrial Sectors of the Russian Federation. Order of the Ministry of Energy of the Russian Federation No. 210 dated Mar. 31, 2015.Google Scholar
  5. 5.
    P. N. Kuznetsov, L. I. Kumetsova, and A. V. Kazbanova, Khim. Interesakh Ustoich. Razvit., No. 18, 299-311 (2010).Google Scholar
  6. 6.
    Y.-Y. P. Tsao, T. J. Huang, and P. J. Angevin, US Pat. 6, 241, 876, Jun. 5, 2001.Google Scholar
  7. 7.
    T. M. Do Phuong, S. Crossley, M. Santikunaporn, et al., Catalysis, 20, 33-64 (2007).Google Scholar
  8. 8.
    A. H. Alzaid, "A kinetic study of decalin selective ring opening reactions over iridium supported on H-Beta zeolite catalyst," Univ. Br. Columbia, Vancouver, 2011.Google Scholar
  9. 9.
    J. L. Brito and A. L. Barbosa, J. Canal., 171, 329 (1997).Google Scholar
  10. 10.
    A. I. Grudanova, L. A. Gulyaeva, L. A. Krasirmlova, et al., Kata. Prom-sti., 15, No. 2, 46-52 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Yusovskii
    • 1
    • 2
    Email author
  • A. K. Gabbasova
    • 2
  • V. O. Koshevoi
    • 2
  • R. E. Boldushevskii
    • 1
    • 2
  • A. I. Guseva
    • 1
  • P. A. Nikurshin
    • 1
  1. 1.VNIINPMoscowRussia
  2. 2.1. M. Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia

Personalised recommendations