Vacuum Gas-Oil Cracking Catalysts Based on Fe-Modified Kaolinites with and Without Zeolites

  • O. K. KimEmail author
  • L. D. Volkova
  • N. A. Zakarina
  • A. R. Brodskii

Activities of HCeY vacuum gas-oil cracking catalysts based on the H-form of Fe-modified kaolinites from Kazakhstan deposits with and without zeolites are reported. The physicochemical properties of the catalysts were determined. The main cracking product of vacuum gas oil on Fe-modified H-kaolinites without zeolites was light gas oil, the yields of which was 65.3-67.3%. Adding zeolite increased the gasoline yield up to 22% with rather high feedstock conversion (up to 90.3%).


catalytic cracking vacuum gas oil kaolinite gasoline light gas oil 



We thank staff members V P Grigor'eva, A. A. Shapovalov, and V I. Yaskevich of the Laboratory of Physical Methods for assistance with determining the physicochemical characteristics of the catalysts. The work was sponsored by a grant of the Ministry of Education and Science, Republic of Kazakhstan, AR05132064.


  1. 1.
    A. E. Emam, APRNJ. Sci. Technol., 3, No. 4, 356-375 (2013).Google Scholar
  2. 2.
    A. Gil, S.A. Korili, R. Trujillano, et al., Pillared Clays and Related Catalysts, Springer, New York, 2010, 522 pp.Google Scholar
  3. 3.
    A. Gil, S.A. Korili, and M. A. Vicente, Carat Rev.: Sci. Eng., 50, No. 2, 153-221(2008).CrossRefGoogle Scholar
  4. 4.
    H. H. Murray, Clay Miner., 34, No. 1, 39-49 (1999).CrossRefGoogle Scholar
  5. 5.
    H. H. Murray, Appl. Clay Sci., 17, No. 5-6, 207-211(2000).CrossRefGoogle Scholar
  6. 6.
    A. B. Bodryi, I. F. Usmanov, et al., RU Pat. 2,517,171C1, May 27,2014.Google Scholar
  7. 7.
    J. B. Adeyoe, J. A. Omoleye, M. E. Ojevmmi, et al. Int. J. Appl. Eng. Res., 12, No. 5, 755-760 (2017).Google Scholar
  8. 8.
    K. I. Patrilyak, V. I. Nazarok, and L. IC Patrilyak, Zh. Priid. Khim., 72, No. 5, 797-803 (1999).Google Scholar
  9. 9.
    Sh.-Q. Zheng, Sh.-H. Sun, Zh.-F. Wang, et al., Clay Miner., 40, 303-310 (2005).CrossRefGoogle Scholar
  10. 10.
    M. L. A. Goncalves, J. It C. Barreto, W. V. Cerqueira, et al., J. Therm. Ana/. Calonm., 97, No. 2, 515-519 (2009).CrossRefGoogle Scholar
  11. 11.
    C. Liu, G. Deng. G. Pan, et al., Appt Carat., A, 257, No. 2,145-150 (2004).Google Scholar
  12. 12.
    T. J. Rong and J. K. Xiao, Mater. Lett, 57, No. 2, 297-301(2002).CrossRefGoogle Scholar
  13. 13.
    C. Belver, M.A. Munor, and M. A. Vicente, Chem. Mater, 14, No. 5, 2033-2043 (2002).CrossRefGoogle Scholar
  14. 14.
    A. K. Panda, B. G Mita, D. K. Mishra, et al., Colloids Surf, A, 363, No. 1-3, 98-104 (2010).Google Scholar
  15. 15.
    V. Yu. Prokoflev, O. N. Zakbarov, P. B. Razgovorov, et al. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 51, No. 7, 797-803 (2008).Google Scholar
  16. 16.
    M. E. Kurbanbaev, B. O. Esimov, and T. A. Adyrbaev. Fundam,. Issled., No. 4, 88-92 (2015).Google Scholar
  17. 17.
    S. I. Dzhaksybaev, Mineral Ore of Pavlodar Oblast [in Russian], PGU iati S. Toraigyrova, Pavlodar, 2012,104 pp.Google Scholar
  18. 18.
    N. A. Zakarina, L. D. Volkova, and O. K. Kim, in Europacat XI, Lion, Sept. 1-6, 2013, EFCATS, Lion, 2013,p. 214.Google Scholar
  19. 19.
    M. N. Timofeeva and S. U. Khankhasaeva, Kinet. Karat., 50, No. 1, 63-71(2009).Google Scholar
  20. 20.
    OST 38.04476-79Google Scholar
  21. 21.
    L. D. Volkova, L. D. Zakarina, and A. K. Akurpekova, Neftekhimiya, 54, No. 1, 38-42 (2014).Google Scholar
  22. 22.
    R. V. Arkhipov, B. I. Gizatullin, E. N. Dulov, et al., Vestn. Kazan. Tekhrtol. Univ., No. 10, 79-85 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. K. Kim
    • 1
    Email author
  • L. D. Volkova
    • 1
  • N. A. Zakarina
    • 1
  • A. R. Brodskii
    • 1
  1. 1.D. V. Sokol’skii Institute of Fuel, Catalysis and ElectrochemistryAlmatyKazakhstan

Personalised recommendations