Advertisement

Chemistry and Technology of Fuels and Oils

, Volume 55, Issue 4, pp 373–377 | Cite as

Composition and Properties of microalgae Biomass Hydrothermal Liquefaction Products

  • M. S. VlaskinEmail author
  • A. V. Grigorenko
  • M. S. Kotelev
  • D. S. Kopitsyn
  • K. M. Mazurova
  • E. V. Ivanov
CURRENT PROBLEMS. Alternative feedstock
  • 28 Downloads

Hydrothermal liquefaction of microalgae biomass at various temperatures was studied. The products were analyzed by thermogravimetry, elemental analysis, and gas-chromatography—mass-spectromeny. It was concluded that the temperature affected the product yield and composition. The quantitative contents of the major components in the gasoline fraction of the produced bio-oil were determined. The main components in the gasoline fraction were aromatic hydrocarbons, alkanes, and cycloalkanes. The hydrothermal processing products also contained significant quantities of phenols, organic sulfides, and nitrogenous organic compounds that prevented their direct use as fuel components.

Keywords

bio-oil hydrothermal liquefaction wet pyrolysis microalgae biomass 

Notes

Acknowledgements

The work was financially supported by the Ministry 0-Education and Science of the Russian Federation (Unique Project Identifier RFMEFI57417X0137).

References

  1. 1.
    A. F. Clarens, E. P. Resurreccion, M. A. White. et al., Ertviron. Sci. Technol., 44, 1813-1819 (2010).CrossRefGoogle Scholar
  2. 2.
    O. M. Adeniyi, U. Azimov, and A. Burluka, Renewable Sustainable Energy Rev., 90, 316-335 (2018).CrossRefGoogle Scholar
  3. 3.
    M. S. Rotelev, I. A. Antonov, A. V. Beskorovainyi, et al., Chem. Technol. Fuels Oils, 49, 1-4 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Marcilla, L. Catala, J. C. Garcia-Quesada, et al., Renewable Sustainable Energy Rev., 27, 11-19 (2013).CrossRefGoogle Scholar
  5. 5.
    S. S. Tow, L. Rosendahl, and A. Rudolf, Energy, 36, 2328-2342 (2011).CrossRefGoogle Scholar
  6. 6.
    D.C. Elliott, P. Biller,A. B. Ross, et al.. Bioresour. Technol., 178,147-156 (2015).CrossRefGoogle Scholar
  7. 7.
    M. S. Vlaskin, N. I. Chemova, S. V. Kiseleva, et al., Therm. Eng., 64,627436 (2017).CrossRefGoogle Scholar
  8. 8.
    M. S. Vlaskin, Y. I. Rostyukevich, A. V. Grigorenko, et al.. Russ. J. Appl. Chem., 90, 1285-1292 (2017).CrossRefGoogle Scholar
  9. 9.
    D.C. Elliott, Algal Res., 13, 255-263 (2016).CrossRefGoogle Scholar
  10. 10.
    D. P. Melnilov, I. A. Antonov, M. S. Rotelev, et al., Chem. Technol. Fuels Oils, 50, 95-98 (2014).CrossRefGoogle Scholar
  11. 11.
    A. V. Bridgwater, “Pyrolysis of solid biomass: Basics, processes and products,” in: Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. M. Raltschmitt M. (ed.), 2019,pp. 1221-1250.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. S. Vlaskin
    • 1
    • 2
    Email author
  • A. V. Grigorenko
    • 2
  • M. S. Kotelev
    • 1
  • D. S. Kopitsyn
    • 1
  • K. M. Mazurova
    • 1
  • E. V. Ivanov
    • 1
  1. 1.I. M. Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations