Chemistry and Technology of Fuels and Oils

, Volume 55, Issue 3, pp 339–352 | Cite as

The Effect of Thermochemical Factors on Fracturing Pressure in Shale Rock Characterized by Tensisle Strength Anisotropy

  • Yingjie Chen
  • Jianhong FuEmail author
  • Yang Liu
  • Feng Li

Drilling mud characteristics affect the stress distribution around the borehole, while anisotropic tensile strength determines the fracture behavior of the formation, but the combined effect of these factors is rarely considered in the prediction of fracture pressure. In this work, tensile strength anisotropy of shale rock was analyzed based on the Brazilian disc test (BDT), and the corresponding anisotropic tensile criteria were reviewed and contrasted with experimental results. The N-Z (Nova – Zaninetti) criterion is adopted to describe tensile strength anisotropy of shale rock. Based on the stress distribution model and the N-Z criterion, a model of shale rock fracture under the combined action of thermal and chemical factors was constructed. The solution of the model shows that chemical and thermal factors have a different effect on pore pressure distribution around the borehole. The effect of sedimentary layers, tensile strength anisotropy, in-situ stress and pore pressure on equivalent density of fracture pressure (EDFP) was also investigated. It is shown that the EDFP decreases with increasing dip angle at a given strike of the bedding plane and reaches a minimum value when the strike of the bedding plane is along the direction of the minimum horizontal stress. The decrease in EDFP caused by tensile strength anisotropy reaches or exceeds 10% of the value calculated for isotropic conditions. The more pronounced the anisotropy of strength, the smaller the possible value of EDFP. The higher the ratio of horizontal stresses and pore pressure, the more significant the effect of anisotropy on EDFP. It is also notable that increasing the temperature of the wellbore can improve EDFP parameters and enlarge the SMDW.


fracture pressure shale rock tensile strength anisotropy thermochemical effect; failure criterion 


This work was financially supported by the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Southwest Petroleum University (grants Nos. G201604 and PLN201611) and the National Natural Science Foundation of China (grant No. 51604230).


  1. 1.
    Y. Feng and K. E. Gray, SPE Journal, 23, 205–223 (2018) (SPE 187945-PA).Google Scholar
  2. 2.
    B. Aadnoy and R. Looyeh, Petroleum Rock Mechanics: Drilling Operations and Well Design, Gulf Professional Publishing, Oxford, UK (2011).CrossRefGoogle Scholar
  3. 3.
    Y. Feng, J. F. Jones, and K. E. Gray, SPE Drilling & Completion, 31(2), 134–144 (2016).CrossRefGoogle Scholar
  4. 4.
    Y. Feng, C. Arlanoglu, E. Podnos, et al., SPE Drilling & Completion, 30(1), 38–51 (2015).CrossRefGoogle Scholar
  5. 5.
    J. C. Zhang and S. X. Yin, Petrol. Sci., 14 (4), 720–730 (2017).CrossRefGoogle Scholar
  6. 6.
    M. K. Hubbert and D. G. Willis, AIME Petroleum Transactions, 210, 153–168 (1957).Google Scholar
  7. 7.
    W. R. Matthews and J. Kelly, Oil and Gas Journal, 65(8), 92–106 (1967).Google Scholar
  8. 8.
    B. A. Eaton, J. Petrol. Technol., 21(10), 1353–1360 (1969).CrossRefGoogle Scholar
  9. 9.
    R. A. Anderson, D. S. Ingram, and A. M. Zanier, J. Petrol. Technol., 11, 1259–1268 (1973).CrossRefGoogle Scholar
  10. 10.
    R. Huang, Journal of the University of Petroleum, China, 9(4), 335–346 (1984).Google Scholar
  11. 11.
    Z. P. Yang, B. He, L. Z. Xie, et al., Rock and Soil Mechanics, 36(12), 3447–3455 (2015).Google Scholar
  12. 12.
    J. Wang, L. Xie, H. Xie, et al., J. Nat. Gas Sci. Eng., 36, 1120–1129 (2016).CrossRefGoogle Scholar
  13. 13.
    P. Hou, F. Gao, Y. G. Yang, et al., Chin. J. Geotech. Eng., 38, 930–939 (2016).Google Scholar
  14. 14.
    T. Ma, N. Peng, Z. Zhu, et al., Review and New Insights. Energies, 11(2), 304 (2018).Google Scholar
  15. 15.
    T. Ma, B. Wu, J. Fu, et al., J. Nat. Gas Sci. Eng., 38, 485–503 (2017).CrossRefGoogle Scholar
  16. 16.
    T. Ma, Q. B. Zhang, P. Chen, et al., J. Petrol. Sci. Eng., 149, 393–408 (2017).CrossRefGoogle Scholar
  17. 17.
    Y. Wang and E. Papamichos, Water Resour. Res., 30(12), 3375–3384 (2017).CrossRefGoogle Scholar
  18. 18.
    G. Chen, M. E. Chenevert, M. M. Sharma, et al., J. Petrol. Sci. Eng., 38(3–4), 167–176 (2003).CrossRefGoogle Scholar
  19. 19.
    G. Chen and R. T. Ewy, SPE Journal, 10(02), 121–129 (2005).CrossRefGoogle Scholar
  20. 20.
    V. Vishal, S. P. Pradhan, and T. N. Singh, Geotechnical and Geological Engineering, 29(6): 1127–1133 (2011).CrossRefGoogle Scholar
  21. 21.
    D. Li and L. N. Y. Wong, Rock Mech. Rock Eng., 46(2), 269–287 (2013).CrossRefGoogle Scholar
  22. 22.
    B. Wu, R. Chen, and K. Xia, Int. J. Rock Mech. Min., 80, 12–18 (2015).CrossRefGoogle Scholar
  23. 23.
    D. W. Hobbs, Int. J. Rock Mech. Min., 1(3), 385–396 (1964).CrossRefGoogle Scholar
  24. 24.
    R. Sierra, M. H. Tran, Y. N. Abousleiman, et al., “Woodford shale mechanical properties and the impacts of lithofacies,” In: 44 th US Rock Mechanics Symposium and 5 th US-Canada Rock Mechanics Symposium, American Rock Mechanics Association (2010).Google Scholar
  25. 25.
    N. D. J. Simpson, “An analysis of tensile strength, fracture initiation and propagation in anisotropic rock (gas shale) using Brazilian tests quipped with high speed video and acoustic emission,” dissertation, Norwegian University of Science and Technology (2013).Google Scholar
  26. 26.
    D. W. Hobbs, Int. J. Rock Mech. Min., 4(1), 115–127 (1967).CrossRefGoogle Scholar
  27. 27.
    K. Barron, Int. J. Rock Mech. Min., 8(6), 553–563 (1971).CrossRefGoogle Scholar
  28. 28.
    R. Nova and A. Zaninetti, Int. J. Rock Mech. Min., 27(4), 231–242 (1990).CrossRefGoogle Scholar
  29. 29.
    Y. K. Lee and S. Pietruszczak, Int. J. Rock Mech. Min., 79, 205–215 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Kurashige, Int. J. Solids Struct., 25(9), 1039–1052 (1989).CrossRefGoogle Scholar
  31. 31.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford (1959).Google Scholar
  32. 32.
    M. Yu, M. E. Chenevert, and M. M. Sharma, J. Petrol. Sci. Eng., 38(3–4), 131–143 (2003).CrossRefGoogle Scholar
  33. 33.
    M. Chen, Y. Jin, and G. Zhang, Rock Mechanics of Petroleum Engineering, Science Press, Beijing, China (2008).Google Scholar
  34. 34.
    G. Chen, “A study of wellbore stability in shales including poroelastic, chemical, and thermal effects,” dissertation, The University of Texas at Austin (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.Exploration Business DivisionCNPC Southwest Oil and Gas FieldChengduChina
  3. 3.Guangxi Oil Production Plant of Southwest Oil and Gas Company, SinopecDeyangChina

Personalised recommendations