Advertisement

Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer

  • Sylvie Rodrigues-Ferreira
  • Angie Molina
  • Clara NahmiasEmail author
Review

Abstract

Purpose

Breast cancer is the most common malignancy in women worldwide. Although important therapeutic progress was achieved over the past decade, this disease remains a public health problem. In light of precision medicine, the identification of new prognostic biomarkers in breast cancer is urgently needed to stratify populations of patients with poor clinical outcome who may benefit from new personalized therapies. The microtubule cytoskeleton plays a pivotal role in essential cellular functions and is an interesting target for cancer therapy. Microtubule assembly and dynamics are regulated by a wide range of microtubule-associated proteins (MAPs), some of which have oncogenic or tumor suppressor effects in breast cancer.

Results

This review covers current knowledge on microtubule-associated tumor suppressors (MATS) in breast cancer and their potential value as prognostic biomarkers. We present recent studies showing that combinatorial expression of ATIP3 and EB1, two microtubule-associated biomarkers with tumor suppressor and oncogenic effects, respectively, improves breast cancer prognosis compared to each biomarker alone.

Conclusions

These findings are discussed regarding the increasing complexity of protein networks composed of MAPs that coordinate microtubule dynamics and functions. Further studies are warranted to evaluate the prognostic value of combined expression of different MATS and their interacting partners in breast cancer.

Keywords

ATIP3 Combinatorial expression EB1 Microtubule-associated protein Prognosis Tumor suppressor 

Notes

Funding

This work has been funded by Gustave Roussy Cancer Center, the ANR Grant MMO ANR-10-IBHU-0001, the Comité Ile-de-France of the Ligue Nationale contre le Cancer, the Ligue contre le Cancer 94/Val-de-Marne, the Entreprises contre le cancer (GEFLUC) Ile-de-France, the Fondation ARC pour la recherche contre le cancer, the CNRS, the INSERM, the Fondation Janssen Horizon, the Fonds de Dotation Agnès b., the association Odyssea and Prolific.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Harbeck N, Gnant M (2017) Breast cancer. Lancet 389:1134–1150PubMedCrossRefGoogle Scholar
  2. 2.
    Falco M, Palma G, Rea D, De Biase D, Scala S, D’Aiuto M et al (2016) Tumour biomarkers: homeostasis as a novel prognostic indicator. Open Biol.  https://doi.org/10.1098/rsob.160254 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    André F, Bachelot T, Commo F, Campone M, Arnedos M, Dieras V et al (2014) Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol 15:267–274PubMedCrossRefGoogle Scholar
  4. 4.
    Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N et al (2019) Genomic characterization of metastatic breast cancers. Nature 569:560–564PubMedCrossRefGoogle Scholar
  5. 5.
    Low SK, Zembutsu H, Nakamura Y (2018) Breast cancer: the translation of big genomic data to cancer precision medicine. Cancer Sci 109:497–506PubMedCrossRefGoogle Scholar
  6. 6.
    Bettaieb A, Paul C, Plenchette S, Shan J, Chouchane L, Ghiringhelli F (2017) Precision medicine in breast cancer: reality or utopia? J Transl Med 15:139PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726PubMedCrossRefGoogle Scholar
  8. 8.
    Jiang K, Toedt G, Montenegro Gouveia S, Davey NE, Hua S, van der Vaart B et al (2012) A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr Biol 22:1800–1807PubMedCrossRefGoogle Scholar
  9. 9.
    Martin M, Akhmanova A (2018) Coming into focus: mechanisms of microtubule minus-end organization. Trends Cell Biol 28:574–588PubMedCrossRefGoogle Scholar
  10. 10.
    Sung M, Giannakakou P (2014) BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene 33:1418–1428PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA 95:12983–12988PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lotti LV, Ottini L, D’Amico C, Gradini R, Cama A, Belleudi F et al (2002) Subcellular localization of the BRCA1 gene product in mitotic cells. Genes Chromosomes Cancer 35:193–203PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T et al (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117(Pt 7):1117–1128PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H et al (2009) 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS ONE 4(10):e7239PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP (2003) Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22:8125–8136PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rong R, Jin W, Zhang J, Sheikh MS, Huang Y (2004) Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 23:8216–8230PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P et al (2009) VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 11:994–1001PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Morrison EE (2009) The APC-EB1 interaction. Adv Exp Med Biol 656:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H et al (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376CrossRefGoogle Scholar
  20. 20.
    Slep KC, Rogers SL, Elliott SL, Ohkura H, Kolodziej PA, Vale RD (2005) Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J Cell Biol 168:587–598PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cohen-Dvashi H, Ben-Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S et al (2015) Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med 7:299–314PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gao J, Huo L, Sun X, Liu M, Li D, Dong JT et al (2008) The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J Biol Chem 283:8802–8809PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Munemitsu S, Souza B, Müller O, Albert I, Rubinfeld B, Polakis P (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54:3676–3681PubMedPubMedCentralGoogle Scholar
  24. 24.
    Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ (2007) The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 104:8869–8874PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ishii H, Vecchione A, Murakumo Y, Baldassarre G, Numata S, Trapasso F et al (2001) FEZ1/LZTS1 gene at 8p22 suppresses cancer cell growth and regulates mitosis. Proc Natl Acad Sci USA 98:10374–10379PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Muranen T, Grönholm M, Lampin A, Lallemand D, Zhao F, Giovannini M et al (2007) The tumor suppressor merlin interacts with microtubules and modulates Schwann cell microtubule cytoskeleton. Hum Mol Genet 16:1742–1751PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Molina A, Velot L, Ghouinem L, Abdelkarim M, Bouchet BP, Luissint AC (2013) ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res 73:2905–2915PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Smole Z, Thoma CR, Applegate KT, Duda M, Gutbrodt KL, Danuser G et al (2014) Tumor suppressor NF2/Merlin is a microtubule stabilizer. Cancer Res 74:353–362PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chaudhuri AR, Khan IA, Prasad V, Robinson AK, Ludueña RF, Barnes LD (1999) The tumor suppressor protein Fhit. A novel interaction with tubulin. J Biol Chem 274:24378–24382PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ho KY, Kalle WH, Lo TH, Lam WY, Tang CM (1999) Reduced expression of APC and DCC gene protein in breast cancer. Histopathology 35:249–256PubMedCrossRefGoogle Scholar
  31. 31.
    Rakha EA, El-Sheikh SE, Kandil MA, El-Sayed ME, Green AR, Ellis IO (2008) Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum Pathol 39:857–865PubMedCrossRefGoogle Scholar
  32. 32.
    Hayashi M, Jono H, Shinriki S, Nakamura T, Guo J, Sueta A et al (2014) Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Res Treat 143:447–457PubMedCrossRefGoogle Scholar
  33. 33.
    Campiglio M, Pekarsky Y, Menard S, Tagliabue E, Pilotti S, Croce CM (1999) FHIT loss of function in human primary breast cancer correlates with advanced stage of the disease. Cancer Res 59:3866–3869PubMedGoogle Scholar
  34. 34.
    Lovat F, Ishii H, Schiappacassi M, Fassan M, Barbareschi M, Galligioni E et al (2014) LZTS1 downregulation confers paclitaxel resistance and is associated with worse prognosis in breast cancer. Oncotarget 5:970–977PubMedCrossRefGoogle Scholar
  35. 35.
    Morrow KA, Das S, Metge BJ, Ye K, Mulekar MS, Tucker JA et al (2011) Loss of tumor suppressor Merlin in advanced breast cancer is due to post-translational regulation. J Biol Chem 286:40376–40385PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hagrass HA, Pasha HF, Shaheen MA, Abdel Bary EH, Kassem R (2014) Methylation status and protein expression of RASSF1A in breast cancer patients. Mol Biol Rep 41:57–65PubMedCrossRefGoogle Scholar
  37. 37.
    Zia MK, Rmali KA, Watkins G, Mansel RE, Jiang WG (2007) The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells. Int J Mol Med 20:605–611PubMedGoogle Scholar
  38. 38.
    Hu D, Zhou Z, Davidson NE, Huang Y, Wan Y (2012) Novel insight into KLF4 proteolytic regulation in estrogen receptor signaling and breast carcinogenesis. J Biol Chem 287:13584–13597PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT et al (2001) Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7:1998–2004PubMedGoogle Scholar
  40. 40.
    Yang Q, Nakamura M, Nakamura Y, Yoshimura G, Suzuma T, Umemura T et al (2002) Two-hit inactivation of FHIT by loss of heterozygosity and hypermethylation in breast cancer. Clin Cancer Res 8:2890–2893PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen L, Zhu Z, Sun X, Dong XY, Wei J, Gu F et al (2009) Down-regulation of tumor suppressor gene FEZ1/LZTS1 in breast carcinoma involves promoter methylation and associates with metastasis. Breast Cancer Res Treat 116:471–478PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Rosen EM, Fan S, Pestell RG, Goldberg ID (2003) BRCA1 gene in breast cancer. J Cell Physiol 196:19–41PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J et al (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33:679–689PubMedCrossRefGoogle Scholar
  44. 44.
    Song H, Li D, Wu T, Xie D, Hua K, Hu J et al (2018) MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep 51:602–607PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hou X, Niu Z, Liu L, Guo Q, Li H, Yang X et al (2019) miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol Lett 17:990–998PubMedGoogle Scholar
  46. 46.
    Huszno J, Kołosza Z, Grzybowska E (2019) BRCA1 mutation in breast cancer patients: analysis of prognostic factors and survival. Oncol Lett 17:1986–1995PubMedGoogle Scholar
  47. 47.
    Ginestier C, Bardou VJ, Popovici C, Charafe-Jauffret E, Bertucci F, Geneix J et al (2003) Loss of FHIT protein expression is a marker of adverse evolution in good prognosis localized breast cancer. Int J Cancer 107:854–862PubMedCrossRefGoogle Scholar
  48. 48.
    Martins AT, Monteiro P, Ramalho-Carvalho J, Costa VL, Dinis-Ribeiro M, Leal C et al (2011) High RASSF1A promoter methylation levels are predictive of poor prognosis in fine-needle aspirate washings of breast cancer lesions. Breast Cancer Res Treat 129:1–9PubMedCrossRefGoogle Scholar
  49. 49.
    Di Benedetto M, Bièche I, Deshayes F, Vacher S, Nouet S, Collura V et al (2006) Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. Gene 380:127–136PubMedCrossRefGoogle Scholar
  50. 50.
    Rodrigues-Ferreira S, Nahmias C (2010) An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends Endocrinol Metab 21:684–690PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gupta GD, Coyaud É, Gonçalves J, Mojarad A, Liu Y, Wu Q et al (2015) Dynamic protein interaction landscape of the human centrosome–cilium interface. Cell 163:1484–1499PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Velot L, Molina A, Rodrigues-Ferreira S, Nehlig A, Bouchet BP, Morel M et al (2015) Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget 6:43557–43570PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C (2017) Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 74:2381–2393PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dong X, Liu F, Sun L, Liu M, Li D, Su D et al (2010) Oncogenic function of microtubule end-binding protein 1 in breast cancer. J Pathol 220:361–369PubMedPubMedCentralGoogle Scholar
  55. 55.
    Rodrigues-Ferreira S, Nehlig A, Monchecourt C, Nasr S, Fuhrmann L, Lacroix-Triki M et al (2019) Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast Cancer Res Treat 173:573–583PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Almeida TB, Carnell AJ, Barsukov IL, Berry NG (2017) Targeting SxIP-EB1 interaction: an integrated approach to the discovery of small molecule modulators of dynamic binding sites. Sci Rep 7:15533PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M et al (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6:820–830PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16:4609–4622PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Li D, Gao J, Yang Y, Sun L, Suo S, Luo Y et al (2014) CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle 13:974–983PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Silva Soares EW, de Lima Santos SC, Bueno AG, Cavalli IJ, Cavalli LR, Fouto Matias JE et al (2010) Concomitant loss of heterozygosity at the BRCA1 and FHIT genes as a prognostic factor in sporadic breast cancer. Cancer Genet Cytogenet 199:24–30PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INSERM U981, LabEx LERMIT, Gustave Roussy Cancer Center, Department of Molecular MedicineUniversité Paris SudVillejuifFrance
  2. 2.InovarionParisFrance
  3. 3.Centre de Biologie du Développement, Centre de Biologie IntégrativeUMR 5547 CNRS/Université Paul SabatierToulouseFrance
  4. 4.Inserm U981, Gustave Roussy Cancer CenterVillejuifFrance

Personalised recommendations