Advertisement

Propagation of functional estrogen receptor positive normal human breast cells in 3D cultures

  • Peng Meng
  • Marica Vaapil
  • Abderrahmane Tagmount
  • Alex Loguinov
  • Chris Vulpe
  • Paul YaswenEmail author
Preclinical study

Abstract

Purpose

Understanding how differentiation, microenvironment, and hormonal milieu influence human breast cell susceptibility to malignant transformation will require the use of physiologically relevant in vitro systems. We sought to develop a 3D culture model that enables the propagation of normal estrogen receptor alpha (ER) + cells.

Methods

We tested soluble factors and protocols for the ability to maintain progenitor and ER + cells in cultures established from primary cells. Optimized conditions were then used to profile estrogen-induced gene expression changes in cultures from three pathology-free individuals.

Results

Long-term representation of ER + cells was optimal in medium that included three different TGFβ/activin receptor-like kinase inhibitors. We found that omitting the BMP signaling antagonist, Noggin, enhanced the responsiveness of the PGR gene to estradiol exposure without altering the proportions of ER + cells in the cultures. Profiling of estradiol-exposed cultures showed that while all the cultures showed immediate and robust induction of PGR, LRP2, and IGFB4, other responses varied qualitatively and quantitatively across specimens.

Conclusions

We successfully identified conditions for the maintenance and propagation of functional ER + cells from normal human breast tissues. We propose that these 3D cultures will overcome limitations of conventional 2D cultures of partially or fully transformed cell lines by sustaining normal endocrine function and growth regulation of the cell populations that comprise intact breasts.

Keywords

Estrogen Progenitors Cell culture TGFβ BMP 

Notes

Acknowledgements

This work was supported by grants from the California Breast Cancer Research Program (21UB-8012, P.Y.; 17UB-8708, C.V.) and the Avon Research Foundation (L1779, C.V.), and a fellowship (to M.V.) from the Tegger Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

De-identified histologically normal breast tissues obtained with informed consent from women undergoing reduction mammoplasties were purchased from the Cooperative Human Tissue Network (CHTN). CHTN operating policies and procedures protect subjects from whom specimens are obtained. These policies and procedures are consistent with current regulations and guidance for repositories from the United States Office of Human Research Protections (OHRP, DHHS). All divisions of the CHTN operate with the review and approval of their local Institutional Review Board (IRB). In addition, the Lawrence Berkeley National Laboratory maintains its own IRB that confirmed that all methods and experimental protocols were performed in accordance with relevant guidelines and regulations.

Supplementary material

10549_2019_5229_MOESM1_ESM.xlsx (109 kb)
Supplementary material 1 (XLSX 108 kb)

References

  1. 1.
    Kurita T, Medina R, Schabel AB, Young P, Gama P, Parekh TV, Brody J, Cunha GR, Osteen KG, Bruner-Tran KL, Gold LI (2005) The activation function-1 domain of estrogen receptor alpha in uterine stromal cells is required for mouse but not human uterine epithelial response to estrogen. Differentiation 73(6):313–322CrossRefGoogle Scholar
  2. 2.
    Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3(12):952–959CrossRefGoogle Scholar
  3. 3.
    Petersen O, Ronnov-Jessen L, Howlett A, Bissell M (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation patterns of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89:9064–9068CrossRefGoogle Scholar
  4. 4.
    Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688.  https://doi.org/10.1038/nrc1695 CrossRefGoogle Scholar
  5. 5.
    Graham JD, Mote PA, Salagame U, Balleine RL, Huschtscha LI, Clarke CL (2009) Hormone-responsive model of primary human breast epithelium. J Mammary Gland Biol Neoplasia 14(4):367–379.  https://doi.org/10.1007/s10911-009-9160-6 CrossRefGoogle Scholar
  6. 6.
    Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB (2016) Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 18(1):19.  https://doi.org/10.1186/s13058-016-0677-5 CrossRefGoogle Scholar
  7. 7.
    Fridriksdottir AJ, Kim J, Villadsen R, Klitgaard MC, Hopkinson BM, Petersen OW, Ronnov-Jessen L (2015) Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun 6:8786.  https://doi.org/10.1038/ncomms9786 CrossRefGoogle Scholar
  8. 8.
    Hopkinson BM, Klitgaard MC, Petersen OW, Villadsen R, Rønnov-Jessen L, Kim J (2017) Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype. Oncotarget 8:10580–10593CrossRefGoogle Scholar
  9. 9.
    Jin L, Qu Y, Gomez LJ, Chung S, Han B, Gao B, Yue Y, Gong Y, Liu X, Amersi F, Dang C, Giuliano AE, Cui X (2018) Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget 9(14):11503–11514.  https://doi.org/10.18632/oncotarget.23817 CrossRefGoogle Scholar
  10. 10.
    Vandesompele J, DePreter K, Pattyn F, Poppe B, VanRoy N, DePaepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034CrossRefGoogle Scholar
  11. 11.
    Andrews S FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  12. 12.
    Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048.  https://doi.org/10.1093/bioinformatics/btw354 CrossRefGoogle Scholar
  13. 13.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360.  https://doi.org/10.1038/nmeth.3317 CrossRefGoogle Scholar
  14. 14.
    Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169.  https://doi.org/10.1093/bioinformatics/btu638 CrossRefGoogle Scholar
  15. 15.
  16. 16.
    The R Project for Statistical Computing. https://www.r-project.org/
  17. 17.
  18. 18.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616 CrossRefGoogle Scholar
  19. 19.
    McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297.  https://doi.org/10.1093/nar/gks042 CrossRefGoogle Scholar
  20. 20.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550.  https://doi.org/10.1186/s13059-014-0550-8 CrossRefGoogle Scholar
  21. 21.
    Petersen OW, Hoyer PE, van Deurs B (1987) Frequency and distribution of estrogen receptor-positive cells in normal, non-lactating human breast tissue. Cancer Res 47:5748–5751Google Scholar
  22. 22.
    Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57(22):4987–4991Google Scholar
  23. 23.
    Shoker BS, Jarvis C, Clarke RB, Anderson E, Hewlett J, Davies MP, Sibson DR, Sloane JP (1999) Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am J Pathol 155(6):1811–1815CrossRefGoogle Scholar
  24. 24.
    Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 103(7):2196–2201CrossRefGoogle Scholar
  25. 25.
    Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76(1):69–125CrossRefGoogle Scholar
  26. 26.
    Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM (2014) Niche-independent high-purity cultures of Lgr5 + intestinal stem cells and their progeny. Nat Methods 11(1):106–112.  https://doi.org/10.1038/nmeth.2737 CrossRefGoogle Scholar
  27. 27.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265.  https://doi.org/10.1038/nature07935 CrossRefGoogle Scholar
  28. 28.
    Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, Ellis E, van Wenum M, Fuchs SA, de Ligt J, van de Wetering M, Sasaki N, Boers SJ, Kemperman H, de Jonge J, Ijzermans JN, Nieuwenhuis EE, Hoekstra R, Strom S, Vries RR, van der Laan LJ, Cuppen E, Clevers H (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160(1–2):299–312.  https://doi.org/10.1016/j.cell.2014.11.050 CrossRefGoogle Scholar
  29. 29.
    Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, Vries RG, Cuppen E, Chen Y, Sawyers CL, Clevers HC (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159(1):163–175.  https://doi.org/10.1016/j.cell.2014.08.017 CrossRefGoogle Scholar
  30. 30.
    Petersen OW, Polyak K (2010) Stem cells in the human breast. Cold Spring Harb Perspect Biol 2(5):a003160CrossRefGoogle Scholar
  31. 31.
    Jarde T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, Watson PD, Ewan K, Smalley MJ, Dale TC (2016) Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 7:13207.  https://doi.org/10.1038/ncomms13207 CrossRefGoogle Scholar
  32. 32.
    Moreno-Cuevas JE, Sirbasku DA (2000) Estrogen mitorgenic action. III. Is phenol red a “red herring”. In Vitro 36:447–464Google Scholar
  33. 33.
    Forsman CL, Ng BC, Heinze RK, Kuo C, Sergi C, Gopalakrishnan R, Yee D, Graf D, Schwertfeger KL, Petryk A (2013) BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Dev Biol 373(1):95–106.  https://doi.org/10.1016/j.ydbio.2012.10.007 CrossRefGoogle Scholar
  34. 34.
    Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30(3):301–304.  https://doi.org/10.1093/bioinformatics/btt688 CrossRefGoogle Scholar
  35. 35.
    Anderson E (2002) The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res 4(5):197–201CrossRefGoogle Scholar
  36. 36.
    Phippard DJ, Weber-Hall SJ, Sharpe PT, Naylor MS, Jayatalake H, Maas R, Woo I, Roberts-Clark D, Francis-West PH, Liu YH, Maxson R, Hill RE, Dale TC (1996) Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 122(9):2729–2737Google Scholar
  37. 37.
    Montesano R (2007) Bone morphogenetic protein-4 abrogates lumen formation by mammary epithelial cells and promotes invasive growth. Biochem Biophys Res Commun 353(3):817–822.  https://doi.org/10.1016/j.bbrc.2006.12.109 CrossRefGoogle Scholar
  38. 38.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100.  https://doi.org/10.1186/gb-2006-7-10-r100 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environmental Genomics & Systems Biology, Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Physiological Sciences, University of FloridaGainesvilleUSA

Personalised recommendations