Advertisement

Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer

  • Yujia Lan
  • Erjie Zhao
  • Shangyi Luo
  • Yun XiaoEmail author
  • Xia LiEmail author
  • Shujun ChengEmail author
Preclinical study

Abstract

Purpose

Genomic studies have revealed that genomic aberrations play important roles in the progression of this disease. The aim of this study was to evaluate the associations between clinical survival outcomes of the clonality and subclonality status of driver genes in breast cancer.

Methods

We performed an integrated analysis to infer the clonal status of 55 driver genes in breast cancer data from TCGA. We used the chi-squared test to assess the relations between clonality of driver gene mutations and clinicopathological factors. The Kaplan–Meier method was performed for the visualization and the differences between survival curves were calculated by log-rank test. Univariate and multivariate Cox proportional hazards regression models were used to adjust for clinicopathological factors.

Results

We identified a high proportion of clonal mutations in these driver genes. Among them, there were 17 genes showing significant associations between their clonality and multiple clinicopathologic factors. Performing survival analysis on BRCA patients with clonal or subclonal driver gene mutations, we found that clonal ERBB2, FOXA1, and KMT2C mutations and subclonal GATA3 and RB1 mutations predicted shorter overall survival compared with those with wild type. Furthermore, clonal ERBB2 and FOXA1 mutations and subclonal GATA3 and RB1 mutations independently predicted for shorter overall survival after adjusting for clinicopathological factors. By longitudinal analysis, the clonality of ERBB2, FOXA1, GATA3, and RB1 significantly predicted patients’ outcome within some specific BRCA tumor stages and histological subtypes.

Conclusions

In summary, these clonal or subclonal mutations of driver genes have implications for diagnosis, prognosis, and treatment with BRCA patients.

Keywords

Breast cancer Clinical survival Driver gene Clonal mutation Subclonal mutation 

Notes

Author contributions

SJC, XL, and YX conceived and designed the project. YJL, EJZ, and SYL acquired the data. YJL and EJZ performed the statistical analysis and analyzed and interpreted all the data. YJL, EJZ, and SYL prepared the figures and tables. YX and YJL wrote the paper. EJZ and SYL reviewed and revised the manuscript. All authors approved the final manuscript.

Funding

This study was funded in part by the National Program on Key Basic Research Project [973 Program, Grant No. 2014CB910504], the National Natural Science Foundation of China [Grant Nos. 61473106, 61573122], the China Postdoctoral Science Foundation (2016M600260), Wu lien-teh youth science fund project of Harbin medical university [Grant No. WLD-QN1407], Special funds for the construction of higher education in Heilongjiang Province [Grant No. UNPYSCT-2016049], the Heilongjiang Postdoctoral Foundation (LBH-Z16098).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10549_2019_5153_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1337 KB)

References

  1. 1.
    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours Nature 490(7418):61–70.  https://doi.org/10.1038/nature11412 Google Scholar
  2. 2.
    Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121(10):3786–3788.  https://doi.org/10.1172/jci60534 Google Scholar
  3. 3.
    Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, Carrero ZI, Ramakrishnan G, Watabe K, Haupt Y, Haupt S, Pochampally R, Boss GR, Romero DG, Radu CG, Martinez LA (2015) Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Blood 6:7389.  https://doi.org/10.1038/ncomms8389 Google Scholar
  4. 4.
    Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091.  https://doi.org/10.1158/0008-5472.can-07-6854 Google Scholar
  5. 5.
    Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM (2012) Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA 109(8):3024–3029.  https://doi.org/10.1073/pnas.1200010109 Google Scholar
  6. 6.
    Pharoah PD, Easton DF, Stockton DL, Gayther S, Ponder BA (1999) Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer Res 59(4):868–871Google Scholar
  7. 7.
    Verhoog LC, Brekelmans CT, Seynaeve C, van den Bosch LM, Dahmen G, van Geel AN, Tilanus-Linthorst MM, Bartels CC, Wagner A, van den Ouweland A, Devilee P, Meijers-Heijboer EJ, Klijn JG (1998) Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351(9099):316–321Google Scholar
  8. 8.
    Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345.  https://doi.org/10.1038/nature12625 Google Scholar
  9. 9.
    Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13(11):795–806.  https://doi.org/10.1038/nrg3317 Google Scholar
  10. 10.
    Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, Wang L, Wan Y, Zhang W, Shukla SA, Vartanov A, Fernandes SM, Saksena G, Cibulskis K, Tesar B, Gabriel S, Hacohen N, Meyerson M, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152(4):714–726.  https://doi.org/10.1016/j.cell.2013.01.019 Google Scholar
  11. 11.
    Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, Jares P, Navarro A, Martin-Garcia D, Bea S, Salaverria I, Oldreive C, Aymerich M, Suarez-Cisneros H, Rozman M, Villamor N, Colomer D, Lopez-Guillermo A, Gonzalez M, Alcoceba M, Terol MJ, Colado E, Puente XS, Lopez-Otin C, Enjuanes A, Campo E (2016) Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 127(17):2122–2130.  https://doi.org/10.1182/blood-2015-07-659144 Google Scholar
  12. 12.
    Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJM, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343(6167):189–193.  https://doi.org/10.1126/science.1239947 Google Scholar
  13. 13.
    Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, Shimamura T, Niida A, Motomura K, Ohka F, Yamamoto T, Tanahashi K, Ranjit M, Wakabayashi T, Yoshizato T, Kataoka K, Yoshida K, Nagata Y, Sato-Otsubo A, Tanaka H, Sanada M, Kondo Y, Nakamura H, Mizoguchi M, Abe T, Muragaki Y, Watanabe R, Ito I, Miyano S, Natsume A, Ogawa S (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47(5):458–468.  https://doi.org/10.1038/ng.3273 Google Scholar
  14. 14.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404.  https://doi.org/10.1158/2159-8290.cd-12-0095 Google Scholar
  15. 15.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1.  https://doi.org/10.1126/scisignal.2004088 Google Scholar
  16. 16.
    McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C (2015) Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 7(283):283ra254.  https://doi.org/10.1126/scitranslmed.aaa1408 Google Scholar
  17. 17.
    Zhang H, Liao J, Zhang X, Zhao E, Liang X, Luo S, Shi J, Yu F, Xu J, Shen W, Li Y, Xiao Y, Li X (2018) Sex difference of mutation clonality in diffuse glioma evolution. Neuro Oncol.  https://doi.org/10.1093/neuonc/noy154 Google Scholar
  18. 18.
    Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30(5):413–421.  https://doi.org/10.1038/nbt.2203 Google Scholar
  19. 19.
    Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, Vij R, Tomasson MH, Graubert TA, Walter MJ, Ellis MJ, Schierding W, DiPersio JF, Ley TJ, Mardis ER, Wilson RK, Ding L (2014) SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 10(8):e1003665.  https://doi.org/10.1371/journal.pcbi.1003665 Google Scholar
  20. 20.
    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501.  https://doi.org/10.1038/nature12912 Google Scholar
  21. 21.
    Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183.  https://doi.org/10.1038/nrc1299 Google Scholar
  22. 22.
    Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45(D1):D777–D783.  https://doi.org/10.1093/nar/gkw1121 Google Scholar
  23. 23.
    Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol.  https://doi.org/10.1200/PO.17.00011 Google Scholar
  24. 24.
    Burke KA, Piscuoglio S, Berman SH, Reis-Filho JS, Weigelt B, van Diest PJ, Moelans CB, Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Cancer Res 15(2):81–94.  https://doi.org/10.1038/nrclinonc.2017.166 Google Scholar
  25. 25.
    McGranahan N, Swanton C (2015) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1):15–26.  https://doi.org/10.1016/j.ccell.2014.12.001 Google Scholar
  26. 26.
    Landau DA, Carter SL, Getz G, Wu CJ (2014) Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 28(1):34–43.  https://doi.org/10.1038/leu.2013.248 Google Scholar
  27. 27.
    Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer C, Della Porta MG, O’Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122(22):3616–3627.  https://doi.org/10.1182/blood-2013-08-518886 (quiz 3699)Google Scholar
  28. 28.
    Molenaar RJ, Thota S, Nagata Y, Patel B, Clemente M, Przychodzen B, Hirsh C, Viny AD, Hosano N, Bleeker FE, Meggendorfer M, Alpermann T, Shiraishi Y, Chiba K, Tanaka H, van Noorden CJ, Radivoyevitch T, Carraway HE, Makishima H, Miyano S, Sekeres MA, Ogawa S, Haferlach T, Maciejewski JP (2015) Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia 29(11):2134–2142.  https://doi.org/10.1038/leu.2015.91 Google Scholar
  29. 29.
    Shi J, Hua X, Zhu B, Ravichandran S, Wang M, Nguyen C, Brodie SA, Palleschi A, Alloisio M, Pariscenti G, Jones K, Zhou W, Bouk AJ, Boland J, Hicks B, Risch A, Bennett H, Luke BT, Song L, Duan J, Liu P, Kohno T, Chen Q, Meerzaman D, Marconett C, Laird-Offringa I, Mills I, Caporaso NE, Gail MH, Pesatori AC, Consonni D, Bertazzi PA, Chanock SJ, Landi MT (2016) Somatic genomics and clinical features of lung adenocarcinoma: a retrospective study. PLoS Med 13(12):e1002162.  https://doi.org/10.1371/journal.pmed.1002162 Google Scholar
  30. 30.
    Kim H, Zheng S, Amini SS, Virk SM, Mikkelsen T, Brat DJ, Grimsby J, Sougnez C, Muller F, Hu J, Sloan AE, Cohen ML, Van Meir EG, Scarpace L, Laird PW, Weinstein JN, Lander ES, Gabriel S, Getz G, Meyerson M, Chin L, Barnholtz-Sloan JS, Verhaak RG (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25(3):316–327.  https://doi.org/10.1101/gr.180612.114 Google Scholar
  31. 31.
    Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, Hinton JW, Li Y, Tubio JM, McLaren S, Butler SOM, Teague AP, Mudie JW, Anderson L, Rashid E, Tai N, Shammas YT, Sperling MA, Fulciniti AS, Richardson M, Parmigiani PG, Magrangeas G, Minvielle F, Moreau S, Attal P, Facon M, Futreal T, Anderson PA, Campbell KC, Munshi PJ NC (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5:2997.  https://doi.org/10.1038/ncomms3997 Google Scholar
  32. 32.
    Ng CKY, Bidard FC, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, Shen R, Pareja F, Berman SH, Wang L, Pierga JY, Vincent-Salomon A, Viale A, Norton L, Sigal B, Weigelt B, Cottu P, Reis-Filho JS (2017) Genetic heterogeneity in therapy-naive synchronous primary breast cancers and their metastases. Clin Cancer Res 23(15):4402–4415.  https://doi.org/10.1158/1078-0432.ccr-16-3115 Google Scholar
  33. 33.
    Schrijver W, Selenica P, Lee JY, Ng CKY, Burke KA, Piscuoglio S, Berman SH, Reis-Filho JS, Weigelt B, van Diest PJ, Moelans CB (2018) Mutation profiling of key cancer genes in primary breast cancers and their distant metastases. Cancer Res 78(12):3112–3121.  https://doi.org/10.1158/0008-5472.Can-17-2310 Google Scholar
  34. 34.
    Fusco N, Geyer FC, De Filippo MR, Martelotto LG, Ng CK, Piscuoglio S, Guerini-Rocco E, Schultheis AM, Fuhrmann L, Wang L, Jungbluth AA, Burke KA, Lim RS, Vincent-Salomon A, Bamba M, Moritani S, Badve SS, Ichihara S, Ellis IO, Reis-Filho JS, Weigelt B (2016) Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Mod Pathol 29(11):1292–1305.  https://doi.org/10.1038/modpathol.2016.134 Google Scholar
  35. 35.
    Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DW, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Borresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479.  https://doi.org/10.1038/ncomms11479 Google Scholar
  36. 36.
    Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS (2015) Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst 107 (5).  https://doi.org/10.1093/jnci/djv015
  37. 37.
    Jiang YZ, Yu KD, Zuo WJ, Peng WT, Shao ZM (2014) GATA3 mutations define a unique subtype of luminal-like breast cancer with improved survival. Cancer 120(9):1329–1337.  https://doi.org/10.1002/cncr.28566 Google Scholar
  38. 38.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, Martinez P, Phillimore B, Begum S, Rabinowitz A, Spencer-Dene B, Gulati S, Bates PA, Stamp G, Pickering L, Gore M, Nicol DL, Hazell S, Futreal PA, Stewart A, Swanton C (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233.  https://doi.org/10.1038/ng.2891 Google Scholar
  39. 39.
    Fisher R, Horswell S, Rowan A, Salm MP, de Bruin EC, Gulati S, McGranahan N, Stares M, Gerlinger M, Varela I, Crockford A, Favero F, Quidville V, Andre F, Navas C, Gronroos E, Nicol D, Hazell S, Hrouda D, O’Brien T, Matthews N, Phillimore B, Begum S, Rabinowitz A, Biggs J, Bates PA, McDonald NQ, Stamp G, Spencer-Dene B, Hsieh JJ, Xu J, Pickering L, Gore M, Larkin J, Swanton C (2014) Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution. Genome Biol 15(8):433.  https://doi.org/10.1186/s13059-014-0433-z Google Scholar
  40. 40.
    Swanton C (2015) Cancer evolution constrained by mutation order. N Engl J Med 372(7):661–663.  https://doi.org/10.1056/NEJMe1414288 Google Scholar
  41. 41.
    Delhommeau F (2015) Effect of mutation order on myeloproliferative neoplasms. N Engl J Med 372(19):1865.  https://doi.org/10.1056/NEJMc1503143 Google Scholar
  42. 42.
    McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628.  https://doi.org/10.1016/j.cell.2017.01.018 Google Scholar
  43. 43.
    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209.  https://doi.org/10.1056/NEJMoa1213261 Google Scholar
  44. 44.
    Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447):108–112.  https://doi.org/10.1038/nature12065 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
  2. 2.State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina

Personalised recommendations