Advertisement

Breast Cancer Research and Treatment

, Volume 171, Issue 1, pp 53–63 | Cite as

Genetic dissection of the BRCA2 promoter and transcriptional impact of DNA variants

  • Eugenia Fraile-Bethencourt
  • Alberto Valenzuela-Palomo
  • Beatriz Díez-Gómez
  • Mar Infante
  • Mercedes Durán
  • Germán Marcos
  • Enrique Lastra
  • Susana Gómez-Barrero
  • Eladio A. Velasco
Preclinical study

Abstract

Purpose

Promoter mutations may affect transcription and can be associated with human diseases. However, the promoters of the breast cancer (BC) genes are not regularly screened. Our goal was to investigate the BRCA2 promoter in order to study a possible correlation between impaired transcription and disease.

Methods

The proximal and core promoter of the BRCA2 gene was sequenced in 95 high-risk BC patients. A BRCA2-promoter insert [− 938 to + 312 from the transcription start site (TSS)] was generated and cloned into the firefly luciferase vector pGL4.10. Promoter variants and deletions were introduced by site-directed mutagenesis and quantified by Dual-Luciferase assays and semi-quantitative RT-PCR.

Results

Three different variants were detected in high-risk BC patients: rs3092989, rs206118, and rs563971900. Functional mapping of 13 overlapping deletions revealed four down-regulating segments (TSS positions): −59_−10del/µdel3 (16% of activity of the wild-type construct), −104_−55del/µdel4 (62%), −239_−190del/µdel7 (39%), −464_−415/µdel12 (78%), suggesting the presence therein of putative transcriptional activator motifs. Additionally, six microdeletions rendered luciferase overexpression: +32_+81del/µdel1 (356%), −14_+36del/µdel2 (180%), −194_−145del/µdel6 (154%), −284_−235del/µdel8 (168%), −329_−280del/µdel9 (111%), and −509_−460del/µdel13 (139%), which is indicative of repressor elements. Functional assays of 15 promoter variants (including those detected in patients) showed that ten of them significantly altered expression with seven up-regulating (113–163%) and three down-regulating (rs551887850_G, rs570548398_T, rs55880202_T; 72–83%) SNPs. Eight of them were located in an ENCODE-DNase Hypersensitive Cluster (TSS − 185 to + 105) where most active transcriptional motifs are known to be placed.

Conclusions

BRCA2 expression is highly sensitive to promoter variations as most of them induced relevant changes. Moreover, we mapped critical regions of the BRCA2 promoter that may constitute potential targets for regulatory variants. Three SNPs moderately decreased luciferase activity, but confirmation of its potential pathogenicity requires further analysis. These data reinforce the need to screen the promoter regions of breast cancer genes with a view to discovering novel deleterious mutations.

Keywords

Breast cancer Ovarian cancer Susceptibility genes BRCA2 Transcription Promoter Regulatory mutations Luciferase assays 

Notes

Acknowledgements

We are grateful to the breast/ovarian cancer patients and clinicians who participated in this study. EAV’s lab was supported by grants from the Spanish Ministry of Economy and Competitivity, Plan Nacional de I + D + I 2013–2016, ISCIII (Fis: PI13/01749) co-funded by FEDER from Regional Development European Funds (European Union), and Grant CSI090U14 from the Consejería de Educación (ORDEN EDU/122/2014), Junta de Castilla y León. EFB was supported by a predoctoral fellowship from the University of Valladolid and Banco de Santander (2015–2019).

Data availability

The datasets generated and/or analyzed during the current study are available in the Figshare repository, https://figshare.com/s/e7c982e6afb9907d56a0.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10549_2018_4826_MOESM1_ESM.pptx (157 kb)
Supplementary material 1 (PPTX 156 KB)
10549_2018_4826_MOESM2_ESM.pptx (172 kb)
Supplementary material 2 (PPTX 171 KB)
10549_2018_4826_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 19 KB)

References

  1. 1.
    Roy R, Chun J, Powell SN (2012) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12:68–78.  https://doi.org/10.1038/nrc3181 CrossRefGoogle Scholar
  2. 2.
    Nielsen FC, van Overeem Hansen T, Sørensen CS (2016) Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 16:599–612.  https://doi.org/10.1038/nrc.2016.72 CrossRefPubMedGoogle Scholar
  3. 3.
    Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71CrossRefPubMedGoogle Scholar
  4. 4.
    Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast-cancer susceptibility gene Brca2. Nature 378:789–792CrossRefPubMedGoogle Scholar
  5. 5.
    Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 359:2143–2153.  https://doi.org/10.1056/NEJMra0802968 CrossRefPubMedGoogle Scholar
  6. 6.
    Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40:17–22.  https://doi.org/10.1038/ng.2007.53 CrossRefPubMedGoogle Scholar
  7. 7.
    Balmaña J, Domchek SM, Tutt A, Garber JE (2011) Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2-associated cancers. Cancer Discov 1:29–34.  https://doi.org/10.1158/2159-8274.CD-11-0048 CrossRefPubMedGoogle Scholar
  8. 8.
    Turner NC, Ashworth A (2011) Biomarkers of PARP inhibitor sensitivity. Breast Cancer Res Treat 127:283–286.  https://doi.org/10.1007/s10549-011-1375-8 CrossRefPubMedGoogle Scholar
  9. 9.
    De Vooght KMK, Wijk R, Van, Van Solinge WW (2009) Management of gene promoter mutations in molecular diagnostics. Clin Chem 55:698–708.  https://doi.org/10.1373/clinchem.2008.120931 CrossRefPubMedGoogle Scholar
  10. 10.
    Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6:1–11.  https://doi.org/10.1371/journal.pgen.1001074 CrossRefGoogle Scholar
  11. 11.
    Brewster BL, Rossiello F, French JD et al (2012) Identification of fifteen novel germline variants in the BRCA1 3′UTR reveals a variant in a breast cancer case that introduces a functional miR-103 target site. Hum Mutat 33:1665–1675.  https://doi.org/10.1002/humu.22159 CrossRefPubMedGoogle Scholar
  12. 12.
    Fraile-Bethencourt E, Díez-Gómez B, Velásquez-Zapata V et al (2017) Functional classification of DNA variants by hybrid minigenes: identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet 13:e1006691.  https://doi.org/10.1371/journal.pgen.1006691 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sanz DJ, Acedo A, Infante M et al (2010) A high proportion of DNA variants of BRCA1 and BRCA2 is associated with aberrant splicing in breast/ovarian cancer patients. Clin Cancer Res 16:1957–1967.  https://doi.org/10.1158/1078-0432.CCR-09-2564 CrossRefPubMedGoogle Scholar
  14. 14.
    Quiles F, Menéndez M, Tornero E et al (2016) Investigating the effect of 28 BRCA1 and BRCA2 mutations on their related transcribed mRNA. Breast Cancer Res Treat.  https://doi.org/10.1007/s10549-015-3676-9 PubMedGoogle Scholar
  15. 15.
    Théry JC, Krieger S, Gaildrat P et al (2011) Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes. Eur J Hum Genet 19:1052–1058.  https://doi.org/10.1038/ejhg.2011.100 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lheureux S, Lambert B, Krieger S et al (2011) Two novel variants in the 3′UTR of the BRCA1 gene in familial breast and/or ovarian cancer. Breast Cancer Res Treat 125:885–891.  https://doi.org/10.1007/s10549-010-1165-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367.  https://doi.org/10.1073/pnas.0903103106 CrossRefPubMedGoogle Scholar
  18. 18.
    Shim S-Y, Jeong HJ, Park HJ et al (2017) Functional variation of SHP-2 promoter is associated with preterm birth and delayed myelination and motor development in preterm infants. Sci Rep 7:6052.  https://doi.org/10.1038/s41598-017-06401-x CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Haberle V, Lenhard B (2015) Promoter architectures and developmental gene regulation. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2016.01.014 Google Scholar
  20. 20.
    Cooper DN (2002) Human gene mutation in pathology and evolution. J Inherit Metab Dis 25:157–182.  https://doi.org/10.1023/A:1015621710660 CrossRefPubMedGoogle Scholar
  21. 21.
    Poncz M, Ballantine M, Solowiejczyk D et al (1982) β-Thalassemia in a Kurdish Jew: single base changes in the T-A-T-A box. J Biol Chem 257:5994–5996PubMedGoogle Scholar
  22. 22.
    Davis PL, Miron A, Andersen LM et al (1999) Isolation and initial characterization of the BRCA2 promoter. Oncogene 18:6000–6012CrossRefPubMedGoogle Scholar
  23. 23.
    Velasco E, Infante M, Durán M et al (2007) Heteroduplex analysis by capillary array electrophoresis for rapid mutation detection in large multiexon genes. Nat Protoc 2:237–246.  https://doi.org/10.1038/nprot.2006.482 CrossRefPubMedGoogle Scholar
  24. 24.
    de la Hoya M, Gutierrez-Enriquez S, Velasco E et al (2006) Genomic rearrangements at the BRCA1 locus in Spanish families with breast/ovarian cancer. Clin Chem 52:1480–1485.  https://doi.org/10.1373/clinchem.2006.070110 CrossRefPubMedGoogle Scholar
  25. 25.
    Li W, Cowley A, Uludag M et al (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:W580–W584.  https://doi.org/10.1093/nar/gkv279 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48:463–465.  https://doi.org/10.2144/000113418 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dos Santos ES, Caputo SM, Castera L et al (2017) Assessment of the functional impact of germline BRCA1/2 variants located in non-coding regions in families with breast and/or ovarian cancer predisposition. Breast Cancer Res Treat.  https://doi.org/10.1007/s10549-017-4602-0 PubMedGoogle Scholar
  28. 28.
    Dunham I, Kundaje A, Aldred SF et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74.  https://doi.org/10.1038/nature11247 CrossRefGoogle Scholar
  29. 29.
    Farré D, Roset R, Huerta M et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31:3651–3653CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sandelin A, Alkema W, Engström P et al (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94.  https://doi.org/10.1093/nar/gkh012 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Acedo A, Sanz DJ, Durán M et al (2012) Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes. Breast Cancer Res 14:R87.  https://doi.org/10.1186/bcr3202 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Acedo A, Hernández-Moro C, Curiel-García Á et al (2015) Functional classification of BRCA2 DNA variants by splicing assays in a large minigene with 9 exons. Hum Mutat 36:210–221.  https://doi.org/10.1002/humu.22725 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Karimi M, Goldie LC, Cruickshank MN et al (2009) A critical assessment of the factors affecting reporter gene assays for promoter SNP function: a reassessment of -308 TNF polymorphism function using a novel integrated reporter system. Eur J Hum Genet 17:1454–1462.  https://doi.org/10.1038/ejhg.2009.80 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu Q, Thompson BA, Ward RL et al (2016) Understanding the pathogenicity of noncoding mismatch repair gene promoter variants in Lynch syndrome. Hum Mutat 37:417–426.  https://doi.org/10.1002/humu.22971 CrossRefPubMedGoogle Scholar
  35. 35.
    de la Hoya M, Soukarieh O, López-Perolio I et al (2016) Combined genetic and splicing analysis of BRCA1 c.[594-2A> C; 641A> G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Hum Mol Genet 25:2256–2268.  https://doi.org/10.1093/hmg/ddw094 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Michailidou K, Lindström S, Dennis J et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551:92–94.  https://doi.org/10.1038/nature24284 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585.  https://doi.org/10.1038/ng.2653 CrossRefGoogle Scholar
  38. 38.
    Harper AR, Nayee S, Topol EJ (2015) Protective alleles and modifier variants in human health and disease. Nat Rev Genet 16:689–701.  https://doi.org/10.1038/nrg4017 CrossRefPubMedGoogle Scholar
  39. 39.
    Capasso M, Diskin S, Cimmino F et al (2014) Common genetic variants in NEFL influence gene expression and neuroblastoma risk. Cancer Res 74:6913–6924.  https://doi.org/10.1158/0008-5472.CAN-14-0431 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gochhait S, Bukhari SIA, Bairwa N et al (2007) Implication of BRCA2 -26G> A 5′ untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 codon 72 Arg> Pro polymorphism. Breast Cancer Res 9:R71.  https://doi.org/10.1186/bcr1780 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Maia A-T, Antoniou AC, O’Reilly M et al (2012) Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Res 14:R63.  https://doi.org/10.1186/bcr3169 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kauffmann A, Rosselli F, Lazar V et al (2007) High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 27:565–573.  https://doi.org/10.1038/sj.onc.1210700 CrossRefPubMedGoogle Scholar
  43. 43.
    Sarasin A, Dessen P (2010) DNA repair pathways and human metastatic malignant melanoma. Curr Mol Med 10:413–418CrossRefPubMedGoogle Scholar
  44. 44.
    Klein HL (2008) The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair 7:686–693.  https://doi.org/10.1016/j.dnarep.2007.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bièche I, Noguès C, Lidereau R (1999) Overexpression of BRCA2 gene in sporadic breast tumours. Oncogene 18:5232–5238.  https://doi.org/10.1038/sj.onc.1202903 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eugenia Fraile-Bethencourt
    • 1
  • Alberto Valenzuela-Palomo
    • 1
  • Beatriz Díez-Gómez
    • 1
  • Mar Infante
    • 2
  • Mercedes Durán
    • 2
  • Germán Marcos
    • 3
  • Enrique Lastra
    • 4
  • Susana Gómez-Barrero
    • 5
  • Eladio A. Velasco
    • 1
  1. 1.Grupo de Splicing y CáncerInstituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC-UVa)ValladolidSpain
  2. 2.Cancer GeneticsInstituto de Biología y Genética Molecular (UVa-CSIC)ValladolidSpain
  3. 3.Servicio de OncologíaHospital Río HortegaValladolidSpain
  4. 4.Servicio de OncologíaHospital Universitario de BurgosBurgosSpain
  5. 5.VISAVET-Universidad Complutense de MadridMadridSpain

Personalised recommendations