Breast Cancer Research and Treatment

, Volume 171, Issue 1, pp 199–207 | Cite as

Gene expression in triple-negative breast cancer in relation to survival

  • Shuyang Wang
  • Alicia Beeghly-FadielEmail author
  • Qiuyin Cai
  • Hui Cai
  • Xingyi Guo
  • Liang Shi
  • Jie Wu
  • Fei Ye
  • Qingchao Qiu
  • Ying Zheng
  • Wei Zheng
  • Ping-Ping Bao
  • Xiao-ou Shu



The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression.


We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources.


Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83–0.97), RASGRP1 (HR 0.89, 95% CI 0.82–0.97), and SOD2 (HR 0.80, 95% CI 0.66–0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81–0.97) and RASGRP1 (HR 0.87, 95% CI 0.81–0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06–1.22) and GSPT1 (HR 1.33, 95% CI 1.14–1.55) expression was associated with shorter DFS.


We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.


Triple-negative breast cancer TNBC Survival Progression Gene expression 



This study was supported by grants from the Department of Defense Breast Cancer Research Program (DAMD 17-02-1-0607) and the National Institutes of Health (R01CA118229; P50CA098131). RNA sample preparation was conducted at the Survey and Biospecimen Shared Resources facility that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA068485). The authors thank participants and research team members of the Shanghai Breast Cancer Survival Study for their dedication to the study; Ms. Regina Courtney and Dr. Bo Huang for their help with RNA sample preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All participants of the SBCSS, SCCS, and NBHS provided informed consent; institutional approval was garnered from all appropriate review boards, and all experiments were conducted in compliance with relevant federal and state laws.

Supplementary material

10549_2018_4816_MOESM1_ESM.xlsx (41 kb)
Supplementary material 1 (XLSX 41 KB)


  1. 1.
    Sharma P (2016) Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist 21:1050–1062CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Palma G, Frasci G, Chirico A, Esposito E, Siani C, Saturnino C et al (2015) Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6:26560–26574CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hurvitz S, Mead M (2016) Triple-negative breast cancer: advancements in characterization and treatment approach. Curr Opin Obstet Gynecol 28:59–69PubMedGoogle Scholar
  4. 4.
    Kumar P, Aggarwal R (2016) An overview of triple-negative breast cancer. Arch Gynecol Obstet 293:247–269CrossRefPubMedGoogle Scholar
  5. 5.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108CrossRefPubMedGoogle Scholar
  6. 6.
    DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66:31–42CrossRefPubMedGoogle Scholar
  7. 7.
    Wang C, Kar S, Lai X, Cai W, Arfuso F, Sethi G et al (2018) Triple negative breast cancer in Asia: an insider’s view. Cancer Treat Rev 62:29–38CrossRefPubMedGoogle Scholar
  8. 8.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752CrossRefPubMedGoogle Scholar
  9. 9.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874CrossRefGoogle Scholar
  10. 10.
    Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baglia ML, Cai Q, Zheng Y, Wu J, Su Y, Ye F et al (2014) Dual specificity phosphatase 4 gene expression in association with triple-negative breast cancer outcome. Breast Cancer Res Treat 148:211–220CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim JY, Jung HH, Do I-G, Bae S, Lee SK, Kim SW et al (2016) Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer 16:138CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Park YH, Jung HH, Do I-G, Cho EY, Sohn I, Jung SH et al (2015) A seven-gene signature can predict distant recurrence in patients with triple-negative breast cancers who receive adjuvant chemotherapy following surgery. Int J Cancer 136:1976–1984CrossRefPubMedGoogle Scholar
  14. 14.
    Lee HJ, Lee JJ, Song IH, Park IA, Kang J, Yu JH et al (2015) Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to tumor-infiltrating lymphocytes. Breast Cancer Res Treat 151:619–627CrossRefPubMedGoogle Scholar
  15. 15.
    Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W et al (2009) Soy food intake and breast cancer survival. JAMA 302:2437–2443CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu Y, Baglia M, Zheng Y, Blot W, Bao P-P, Cai H et al (2015) ALDH1A1 mRNA expression in association with prognosis of triple-negative breast cancer. Oncotarget 6:41360–41369PubMedPubMedCentralGoogle Scholar
  17. 17.
    Cui Y, Deming-Halverson SL, Beeghly-Fadiel A, Lipworth L, Shrubsole MJ, Fair AM et al (2014) Interactions of hormone replacement therapy, body weight, and bilateral oophorectomy in breast cancer risk. Clin Cancer Res 20:1169–1178CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Signorello LB, Hargreaves MK, Blot WJ (2010) The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved 21:26–37CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sabatier R, Finetti P, Cervera N, Lambaudie E, Esterni B, Mamessier E et al (2011) A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat 126:407–420CrossRefPubMedGoogle Scholar
  20. 20.
    Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A et al (2011) A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305:1873–1881CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hoadley KA, Weigman VJ, Fan C, Sawyer LR, He X, Troester MA et al (2007) EGFR associated expression profiles vary with breast tumor subtype. BMC Genom 8:258CrossRefGoogle Scholar
  22. 22.
    Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu Z, Fan C, Livasy C, He X, Oh DS, Ewend MG et al (2009) A compact VEGF signature associated with distant metastases and poor outcomes. BMC Med 7:9CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J et al (2007) Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol 179:4890–4900CrossRefPubMedGoogle Scholar
  25. 25.
    Qu HQ, Grant SFA, Bradfield JP, Kim C, Frackelton E, Hakonarson H et al (2009) Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies. J Med Genet 46:553–554CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li H, Gan W, Lu L, Dong X, Han X, Hu C et al (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62:291–298CrossRefPubMedGoogle Scholar
  27. 27.
    Depeille P, Henricks LM, van de Ven RAH, Lemmens E, Wang CY, Matli M et al (2015) RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol 17:804–815CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Alderson NL, Hama H (2009) Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T schwannoma cells. J Lipid Res 50:1203–1208CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Herrero AB, Astudillo AM, Balboa MA, Cuevas C, Balsinde J, Moreno S (2008) Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734. Cancer Res 68:9779–9787CrossRefPubMedGoogle Scholar
  30. 30.
    Salazar R, Jones RJ, Oaknin A, Crawford D, Cuadra C, Hopkins C et al (2012) A phase I and pharmacokinetic study of elisidepsin (PM02734) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70:673–681CrossRefPubMedGoogle Scholar
  31. 31.
    Goel S, Viteri S, Morán T, Coronado C, Dios JLI, Miguel-Lillo B et al (2016) Phase I, dose-escalating study of elisidepsin (Irvalec(®)), a plasma membrane-disrupting marine antitumor agent, in combination with erlotinib in patients with advanced malignant solid tumors. Invest New Drugs 34:75–83CrossRefPubMedGoogle Scholar
  32. 32.
    Xiao R, Li C, Chai B (2015) miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother 74:138–144CrossRefPubMedGoogle Scholar
  33. 33.
    Malta-Vacas J, Chauvin C, Gonçalves L, Nazaré A, Carvalho C, Monteiro C et al (2009) eRF3a/GSPT1 12-GGC allele increases the susceptibility for breast cancer development. Oncol Rep 21:1551–1558PubMedGoogle Scholar
  34. 34.
    Miri M, Hemati S, Safari F, Tavassoli M (2012) GGCn polymorphism of eRF3a/GSPT1 gene and breast cancer susceptibility. Med Oncol 29:1581–1585CrossRefPubMedGoogle Scholar
  35. 35.
    Malta-Vacas J, Ferreira P, Monteiro C, Brito M (2009) Differential expression of GSPT1 GGCn alleles in cancer. Cancer Genet Cytogenet 195:132–142CrossRefPubMedGoogle Scholar
  36. 36.
    Probst S, Arnold SJ (2017) Eomesodermin-at dawn of cell fate decisions during early embryogenesis. Curr Top Dev Biol 122:93–115CrossRefPubMedGoogle Scholar
  37. 37.
    Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP et al (2003) Control of effector CD8 + T cell function by the transcription factor eomesodermin. Science 302:1041–1043CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu Y, Ju S, Chen E, Dai S, Li C, Morel P et al (2010) T-bet and eomesodermin are required for T cell-mediated antitumor immune responses. J Immunol 185:3174–3183CrossRefPubMedGoogle Scholar
  39. 39.
    Chang H, Jeung H-C, Jung JJ, Kim TS, Rha SY, Chung HC (2011) Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat 125:55–63CrossRefPubMedGoogle Scholar
  40. 40.
    Dielmann A, Letsch A, Nonnenmacher A, Miller K, Keilholz U, Busse A (2016) Favorable prognostic influence of T-box transcription factor eomesodermin in metastatic renal cell cancer patients. Cancer Immunol Immunother 65:181–192CrossRefPubMedGoogle Scholar
  41. 41.
    Wang R, Kang Y, Löhr CV, Fischer KA, Bradford CS, Johnson G et al (2016) Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Lett 381:341–348CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kamarajugadda S, Cai Q, Chen H, Nayak S, Zhu J, He M et al (2013) Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis 4:e504CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sutton A, Imbert A, Igoudjil A, Descatoire V, Cazanave S, Pessayre D et al (2005) The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genom 15:311–319CrossRefGoogle Scholar
  44. 44.
    Wang C, Liu Y, Zhou J, Ye L, Chen N, Zhu M et al (2017) There is no relationship between SOD2 Val-16Ala polymorphism and breast cancer risk or survival. Mol Clin Oncol 7:579–590CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Huang X, Dugo M, Callari M, Sandri M, De Cecco L, Valeri B et al (2015) Molecular portrait of breast cancer in China reveals comprehensive transcriptomic likeness to Caucasian breast cancer and low prevalence of luminal A subtype. Cancer Med 4:1016–1030CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuyang Wang
    • 1
  • Alicia Beeghly-Fadiel
    • 1
    • 5
    Email author
  • Qiuyin Cai
    • 1
  • Hui Cai
    • 1
  • Xingyi Guo
    • 1
  • Liang Shi
    • 2
  • Jie Wu
    • 1
  • Fei Ye
    • 3
  • Qingchao Qiu
    • 1
  • Ying Zheng
    • 4
  • Wei Zheng
    • 1
  • Ping-Ping Bao
    • 2
  • Xiao-ou Shu
    • 1
  1. 1.Division of Epidemiology, Department of MedicineVanderbilt University Medical Center, Vanderbilt-Ingram Cancer CenterNashvilleUSA
  2. 2.Shanghai Municipal Center for Disease Control and PreventionShanghaiChina
  3. 3.Department of BiostatisticsVanderbilt University Medical CenterNashvilleUSA
  4. 4.Shanghai Cancer HospitalFudan UniversityShanghaiChina
  5. 5.Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Institute for Medicine and Public HealthVanderbilt University Medical Center, Vanderbilt-Ingram Cancer CenterNashvilleUSA

Personalised recommendations