Advertisement

A common Chk1-dependent phenotype of DNA double-strand break suppression in two distinct radioresistant cancer types

  • Patrick H. Dinkelborg
  • Meng Wang
  • Liliana Gheorghiu
  • Joseph M. Gurski
  • Theodore S. Hong
  • Cyril H. Benes
  • Dejan Juric
  • Rachel B. Jimenez
  • Kerstin Borgmann
  • Henning WillersEmail author
Preclinical study
  • 83 Downloads

Abstract

Purpose

Triple-negative breast cancers (TNBC) are often resistant to treatment with ionizing radiation (IR). We sought to investigate whether pharmacologic inhibition of Chk1 kinase, which is commonly overexpressed in TNBC, preferentially sensitizes TNBC cells to IR.

Methods

Ten breast cancer cell lines were screened with small molecule inhibitors against Chk1 and other kinases. Chk1 inhibition was also tested in isogenic KRAS mutant or wild-type cancer cells. Cellular radiosensitization was measured by short-term and clonogenic survival assays and by staining for the DNA double-strand break (DSB) marker γ-H2AX. Radiosensitization was also assessed in breast cancer biopsies using an ex vivo assay. Aurora B kinase-dependent mitosis-like chromatin condensation, a marker of radioresistance, was detected using a specific antibody against co-localized phosphorylation of serine 10 and trimethylation of lysine 9 on histone 3 (H3K9me3/S10p). Expression of CHEK1 and associated genes was evaluated in TNBC and lung adenocarcinoma.

Results

Inhibition of Chk1 kinase preferentially radiosensitized TNBC cells in vitro and in patient biopsies. Interestingly, TNBC cells displayed lower numbers of IR-induced DSBs than non-TNBC cells, correlating with their observed radioresistance. We found that Chk1 suppressed IR-induced DSBs in these cells, which was dependent on H3K9me3/S10p—a chromatin mark previously found to indicate radioresistance in KRAS mutant cancers. Accordingly, the effects of Chk1 inhibition in TNBC were reproduced in KRAS mutant but not wild-type cells. We also observed co-expression of genes in this Chk1 chromatin pathway in TNBC and KRAS mutant lung cancers.

Conclusions

Chk1 promotes an unexpected, common phenotype of chromatin-dependent DSB suppression in radioresistant TNBC and KRAS mutant cancer cells, providing a direction for future investigations into overcoming the treatment resistance of TNBC.

Keywords

Triple-negative breast cancer Radioresistance Radiosensitization Chk1 DNA double-strand breaks 

Notes

Acknowledgements

This work was in part supported by the American Cancer Society 123420RSG-12-224-01-DMC (H. Willers), UK Wellcome Trust 102696 (C.H. Benes), the Werner-Otto-Stiftung, Hamburg (P.H. Dinkelborg), and the National Cancer Institute of the National Institutes of Health under Award Number U01CA220714 (H. Willers, C.H. Benes). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The following authors declare: Benes, C.H.—funding from Novartis, Amgen, Araxes; Hong, T. S.—consultant/advisory role: Clinical Genomics, EMD Serono, funding from Novartis, Taiho; Juric, D.—consultant/advisory role: Novartis, EMD Serono, Eisai, Genentech. All other authors declare that they have no conflict of interest.

Ethical approval

All patient tumor samples were collected under a protocol approved by the institutional review board.

Supplementary material

10549_2018_5079_MOESM1_ESM.pdf (2.9 mb)
Supplementary material 1 (PDF 2949 KB)

References

  1. 1.
    Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN et al (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19(19):5533–5540CrossRefGoogle Scholar
  2. 2.
    Moran MS (2015) Radiation therapy in the locoregional treatment of triple-negative breast cancer. Lancet Oncol 16(3):e113–e122CrossRefGoogle Scholar
  3. 3.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948CrossRefGoogle Scholar
  4. 4.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698CrossRefGoogle Scholar
  5. 5.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767CrossRefGoogle Scholar
  6. 6.
    Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, Bellon JR, Wong JS, Smith BL, Harris JR (2011) Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J Clin Oncol 29(29):3885–3891CrossRefGoogle Scholar
  7. 7.
    Jwa E, Shin KH, Kim JY, Park YH, Jung SY, Lee ES, Park IH, Lee KS, Ro J, Kim YJ et al (2016) Locoregional recurrence by tumor biology in breast cancer patients after preoperative chemotherapy and breast conservation treatment. Cancer Res Treat 48(4):1363–1372CrossRefGoogle Scholar
  8. 8.
    Zhang C, Wang S, Israel HP, Yan SX, Horowitz DP, Crockford S, Gidea-Addeo D, Clifford Chao KS, Kalinsky K, Connolly EP (2015) Higher locoregional recurrence rate for triple-negative breast cancer following neoadjuvant chemotherapy, surgery and radiotherapy, Springerplus 4: 386CrossRefGoogle Scholar
  9. 9.
    Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13(11):674–690CrossRefGoogle Scholar
  10. 10.
    Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, Perou CM (2013) Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist 18(2):123–133CrossRefGoogle Scholar
  11. 11.
    Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA, Chae YK, Cristofanilli M, Gradishar WJ, Giles FJ (2017) Targeting Epidermal Growth Factor Receptor in triple negative breast cancer: new discoveries and practical insights for drug development. Cancer Treat Rev 53:111–119CrossRefGoogle Scholar
  12. 12.
    Albiges L, Goubar A, Scott V, Vicier C, Lefebvre C, Alsafadi S, Commo F, Saghatchian M, Lazar V, Dessen P et al (2014) Chk1 as a new therapeutic target in triple-negative breast cancer. Breast 23(3):250–258CrossRefGoogle Scholar
  13. 13.
    Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT, Lin L, Hoog J, Goiffon RJ, Prat A et al (2012) Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest 122(4):1541–1552CrossRefGoogle Scholar
  14. 14.
    Qiu Z, Oleinick NL, Zhang J: ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017Google Scholar
  15. 15.
    Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, Arumugarajah S, Hylander-Gans L, Morosini D, Simeone DM et al (2010) Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 70(12):4972–4981CrossRefGoogle Scholar
  16. 16.
    Wang M, Han J, Marcar L, Black J, Liu Q, Li X, Nagulapalli K, Sequist LV, Mak RH, Benes CH et al (2017) Radiation resistance in KRAS-mutated lung cancer is enabled by stem-like properties mediated by an osteopontin-EGFR pathway. Cancer Res 77(8):2018–2028CrossRefGoogle Scholar
  17. 17.
    Willers H, Gheorghiu L, Liu Q, Efstathiou JA, Wirth LJ, Krause M, von Neubeck C (2015) DNA damage response assessments in human tumor samples provide functional biomarkers of radiosensitivity. Semin Radiat Oncol 25(4):237–250CrossRefGoogle Scholar
  18. 18.
    Liu Q, Wang M, Kern AM, Khaled S, Han J, Yeap BY, Hong TS, Settleman J, Benes CH, Held KD et al (2015) Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers. Mol Cancer Res 13(4):713–720CrossRefGoogle Scholar
  19. 19.
    Wang M, Kern AM, Hulskotter M, Greninger P, Singh A, Pan Y, Chowdhury D, Krause M, Baumann M, Benes CH et al (2014) EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation. Cancer Res 74(10):2825–2834CrossRefGoogle Scholar
  20. 20.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6CrossRefGoogle Scholar
  21. 21.
    Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9(7):811–818CrossRefGoogle Scholar
  22. 22.
    Petsalaki E, Akoumianaki T, Black EJ, Gillespie DA, Zachos G (2011) Phosphorylation at serine 331 is required for Aurora B activation. J Cell Biol 195(3):449–466CrossRefGoogle Scholar
  23. 23.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  24. 24.
    Kim RK, Suh Y, Yoo KC, Cui YH, Kim H, Kim MJ, Gyu Kim I, Lee SJ (2015) Activation of KRAS promotes the mesenchymal features of basal-type breast cancer. Exp Mol Med 47:e137CrossRefGoogle Scholar
  25. 25.
    Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, Dorairaj J, Geyda K, Pelletier C, Nallur S et al (2011) A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis. Lancet Oncol 12(4):377–386CrossRefGoogle Scholar
  26. 26.
    Hong TS, Wo JW, Borger DR, Yeap BY, McDonnell EI, Willers H, Blaszkowsky LS, Kwak EL, Allen JN, Clark JW et al (2017) Phase II study of proton-based stereotactic body radiation therapy for liver metastases: Importance of tumor genotype. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djx031 Google Scholar
  27. 27.
    Tam WL, Lu H, Buikhuisen J, Soh BS, Lim E, Reinhardt F, Wu ZJ, Krall JA, Bierie B, Guo W et al (2013) Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24(3):347–364CrossRefGoogle Scholar
  28. 28.
    Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR et al (2015) Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5(8):860–877CrossRefGoogle Scholar
  29. 29.
    Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD et al (2016) Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol 34(21):2460–2467CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Patrick H. Dinkelborg
    • 1
    • 2
  • Meng Wang
    • 1
  • Liliana Gheorghiu
    • 1
  • Joseph M. Gurski
    • 3
  • Theodore S. Hong
    • 1
  • Cyril H. Benes
    • 4
  • Dejan Juric
    • 3
  • Rachel B. Jimenez
    • 1
  • Kerstin Borgmann
    • 2
  • Henning Willers
    • 1
    Email author return OK on get
  1. 1.Department of Radiation Oncology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Laboratory of Radiobiology and Experimental Radiooncology, Clinic of Radiotherapy and RadiooncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Department of Medicine, Massachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonUSA
  4. 4.Center for Cancer Research, Massachusetts General HospitalHarvard Medical SchoolCharlestownUSA

Personalised recommendations