Breast Cancer Research and Treatment

, Volume 165, Issue 3, pp 517–527 | Cite as

Pro-apoptotic effect of Δ2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1

  • Marine Geoffroy
  • Alexandra Kleinclauss
  • Stéphanie Grandemange
  • Sébastien Hupont
  • Michel Boisbrun
  • Stéphane Flament
  • Isabelle Grillier-VuissozEmail author
  • Sandra Kuntz
Preclinical study



40% of triple-negative breast cancer (TNBC) do not express claudin-1, a major constituent of tight junction. Patients with these “claudin-1-low” tumors present a higher relapse incidence. A major challenge in oncology is the development of innovative therapies for such poor prognosis tumors. In this context, we study the anticancer effects of ∆2-TGZ, a compound derived from troglitazone (TGZ), on cell models of these tumors.

Methods and results

In MDA-MB-231 and Hs578T “claudin-1-low” TNBC cells, Δ2-TGZ treatment induced claudin-1 protein expression and triggered apoptosis as measured by FACS analysis (annexin V/PI co-staining). Interestingly, in the non-tumorigenic human breast epithelial cell line MCF-10A, the basal level of claudin-1 was not modified following Δ2-TGZ treatment, which did not induce apoptosis. Furthermore, claudin-1-transfected MDA-MB-231 and Hs578T cells displayed a significant increase of cleaved PARP-1 and caspase 7, caspase 3/7 activities, and TUNEL staining. RNA interference was performed in order to inhibit Δ2-TGZ-induced claudin-1 expression in both the cells. In absence of claudin-1, a decrease of cleaved PARP-1 and caspase 7 and caspase 3/7 activities were observed in MDA-MB-231 but not in Hs578T cells.


Claudin-1 overexpression and Δ2-TGZ treatment are associated to apoptosis in MDA-MB-231 and Hs578T “claudin-1-low” TNBC. Moreover, in MDA-MB-231 cells, claudin-1 is involved in the pro-apoptotic effect of Δ2-TGZ. Our results suggest that claudin-1 re-expression could be an interesting therapeutic strategy for “claudin-1-low” TNBC.


Triple-negative breast cancer Apoptosis Claudin-1 Troglitazone derivatives 



This work was supported by grants of the “Université de Lorraine,” the “Conseil Régional du Grand Est,” and the “Ligue Contre le Cancer.” Marine Geoffroy was recipient of a PhD grant of the «Ministère de l’Enseignement Supérieur et de la Recherche». We thank Christelle Thibault-Carpentier and Doulaye Dembele from the IGBMC GenomEast platform for the GEO deposit.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2017_4378_MOESM1_ESM.pptx (36 kb)
Supplementary material 1 (PPTX 36 kb)
10549_2017_4378_MOESM2_ESM.pptx (40 kb)
Supplementary data. 1 Changes in expression level of genes related to cell adhesion and associated with cancer progression in Δ2-TGZ-treated MCF-7 cells after microarray analysis. Cells were treated for 12 h with DMSO or 25 µM of Δ2-TGZ Gene-expression microarray data were generated using GeneChip Human Gene 1.0 ST Array (containing 764,885 distinct probes including 28,869 well-annotated genes) as previously described [28]. Microarray data are available from Geo Data set (, accession number GSE99941). Supplementary material 2 (PPTX 39 kb)
10549_2017_4378_MOESM3_ESM.pptx (2.3 mb)
Supplementary data. 2 Claudin-1 and occludin co-localization in response to Δ2-TGZ in MDA-MB-231 and Hs578T cells. After treatment for 24 h with DMSO (Ctrl) or 20 µM of Δ2-TGZ, immunofluorescence staining for claudin-1 and occludin were performed in MDA-MB-231 and Hs578T cells. DRAQ5 staining was used for visualisation of the nuclei. a–b Cells were observed by confocal microscopy with magnification from ×400 for Hs578T to ×536 for MDA-MB-231 depending of digital confocal zooming combine with ×40 objective (NA 0.8). One confocal z section of cell of each condition is presented. Claudin-1 staining is upregulated and punctiform in both cell lines. Occludin staining is upregulated only in MDA-MB-231 cells and colocalized with claudin-1. Bar represents 50 µm. Supplementary material 3 (PPTX 2351 kb)
10549_2017_4378_MOESM4_ESM.pptx (3.1 mb)
Supplementary data. 3 Increase apoptosis in MDA-MB-231 cells overexpressing claudin-1 with Δ2-TGZ. MDA-MB-231 cells were transiently transfected with pcDNA3.1 or pcDNA3.1 containing a human claudin-1 expression vector (pcDNA3.1-CLDN1) and treated with 20 µM of Δ2-TGZ. After 48 h of transfection and 24 h of treatment, cells were subjected to western blot analysis. a Western blot analysis was performed with antibodies recognizing claudin-1 (CLDN1) cleaved PARP-1 and cleaved caspase 7. α-tubulin was used as loading control. b Relative protein level corresponds to claudin-1, cleaved PARP-1 (PARP) and cleaved caspase 7 band intensity value adjusted to α-tubulin for Δ2-pcDNA3.1 and Δ2-pcDNA3.1-CLDN1. The values represent the mean ± SEM 5 different experiments. Student-t test was used to determine significance difference from control cells, were *p < 0.05, **p < 0.01 and ***p < 0.001. Supplementary material 4 (PPTX 3130 kb)


  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2012) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. In: Lyon, France: International Agency for Research on Cancer; 2013Google Scholar
  2. 2.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948. doi: 10.1056/NEJMra1001389 CrossRefPubMedGoogle Scholar
  3. 3.
    Zardavas D, Tryfonidis K, Goulioti T, Piccart M (2016) Targeted adjuvant therapy in breast cancer. Expert Rev Anticancer Ther. doi: 10.1080/14737140.2016.1247698 CrossRefPubMedGoogle Scholar
  4. 4.
    Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi: 10.1001/jama.295.21.2492 CrossRefPubMedGoogle Scholar
  5. 5.
    Lu S, Singh K, Mangray S, Tavares R, Noble L, Resnick MB, Yakirevich E (2013) Claudin expression in high-grade invasive ductal carcinoma of the breast: correlation with the molecular subtype. Mod Pathol 26:485–495. doi: 10.1038/modpathol.2012.187 CrossRefPubMedGoogle Scholar
  6. 6.
    Tokes AM, Kulka J, Paku S, Szik A, Paska C, Novak PK, Szilak L, Kiss A, Bogi K, Schaff Z (2005) Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 7:R296–R305. doi: 10.1186/bcr983 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Morohashi S, Kusumi T, Sato F, Odagiri H, Chiba H, Yoshihara S, Hakamada K, Sasaki M, Kijima H (2007) Decreased expression of claudin-1 correlates with recurrence status in breast cancer. Int J Mol Med 20:139–143PubMedGoogle Scholar
  8. 8.
    Szasz AM, Tokes AM, Micsinai M, Krenacs T, Jakab C, Lukacs L, Nemeth Z, Baranyai Z, Dede K, Madaras L, Kulka J (2011) Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis. Clin Exp Metastasis 28:55–63. doi: 10.1007/s10585-010-9357-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Ma F, Ding X, Fan Y, Ying J, Zheng S, Lu N, Xu B (2014) A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS ONE 9:e112765. doi: 10.1371/journal.pone.0112765 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401CrossRefGoogle Scholar
  11. 11.
    Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408CrossRefGoogle Scholar
  12. 12.
    Zhou B, Moodie A, Blanchard AA, Leygue E, Myal Y (2015) Claudin 1 in breast cancer: new insights. J Clin Med 4:1960–1976. doi: 10.3390/jcm4121952 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang K, Yao HP, Wang MH (2008) Activation of RON differentially regulates claudin expression and localization: role of claudin-1 in RON-mediated epithelial cell motility. Carcinogenesis 29:552–559. doi: 10.1093/carcin/bgn003 CrossRefPubMedGoogle Scholar
  14. 14.
    Kulawiec M, Safina A, Desouki MM, Still I, Matsui S, Bakin A, Singh KK (2008) Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther 7:1732–1743CrossRefGoogle Scholar
  15. 15.
    Hoevel T, Macek R, Swisshelm K, Kubbies M (2004) Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 108:374–383. doi: 10.1002/ijc.11571 CrossRefPubMedGoogle Scholar
  16. 16.
    Akasaka H, Sato F, Morohashi S, Wu Y, Liu Y, Kondo J, Odagiri H, Hakamada K, Kijima H (2010) Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells. BMC Cancer 10:548. doi: 10.1186/1471-2407-10-548 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu Y, Wang L, Lin XL, Wang J, Yu JH, Miao Y, Wang EH (2012) Anti-apoptotic effect of claudin-1 on TNF-a-induced apoptosis in human breast cancer MCF-7. Tumor Biol 33:2307–2315CrossRefGoogle Scholar
  18. 18.
    Zhou B, Blanchard A, Wang N, Ma X, Han J, Schroedter I, Leygue E, Myal Y (2015) Claudin 1 promotes migration and increases sensitivity to tamoxifen and anticancer drugs in luminal-like human breast cancer cells MCF7. Cancer Invest 33:429–439. doi: 10.3109/07357907.2015.1060996 CrossRefPubMedGoogle Scholar
  19. 19.
    Frohlich E, Wahl R (2015) Chemotherapy and chemoprevention by thiazolidinediones. Biomed Res Int 2015:845340. doi: 10.1155/2015/845340 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJ (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. doi: 10.1016/S0140-6736(09)60953-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Monami M, Lamanna C, Marchionni N, Mannucci E (2008) Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials. Diabetes Care 31:1455–1460. doi: 10.2337/dc07-2308 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, Eng C, Spiegelman BM, Kantoff PW (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97:10990–10995. doi: 10.1073/pnas.180329197 CrossRefPubMedGoogle Scholar
  23. 23.
    Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, Beressi JP, Verhoeyen E, Raggueneau V, Maneglier B, Castaigne S, Chomienne C, Chretien S, Rousselot P, Leboulch P (2015) Erosion of the chronic myeloid leukaemia stem cell pool by PPAR gamma agonists. Nature. doi: 10.1038/nature15248 CrossRefPubMedGoogle Scholar
  24. 24.
    Chojkier M (2005) Troglitazone and liver injury: in search of answers. Hepatology 41:237–246. doi: 10.1002/hep.20567 CrossRefPubMedGoogle Scholar
  25. 25.
    Salamone S, Colin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Flament S, Martin H, Richert L, Chapleur Y, Boisbrun M (2012) Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur J Med Chem 51:206–215. doi: 10.1016/j.ejmech.2012.02.044 CrossRefPubMedGoogle Scholar
  26. 26.
    Lecomte J, Flament S, Salamone S, Boisbrun M, Mazerbourg S, Chapleur Y, Grillier-Vuissoz I (2008) Disruption of ERalpha signalling pathway by PPARgamma agonists: evidences of PPARgamma-independent events in two hormone-dependent breast cancer cell lines. Breast Cancer Res Treat 112:437–451. doi: 10.1007/s10549-007-9886-z CrossRefPubMedGoogle Scholar
  27. 27.
    Colin C, Salamone S, Grillier-Vuissoz I, Boisbrun M, Kuntz S, Lecomte J, Chapleur Y, Flament S (2010) New troglitazone derivatives devoid of PPARgamma agonist activity display an increased antiproliferative effect in both hormone-dependent and hormone-independent breast cancer cell lines. Breast Cancer Res Treat 124:101–110. doi: 10.1007/s10549-009-0700-y CrossRefPubMedGoogle Scholar
  28. 28.
    Colin-Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, Boisbrun M, Chapleur Y, Diederich M, Flament S, Grillier-Vuissoz I (2015) PPARgamma-inactive Delta2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog 54:393–404. doi: 10.1002/mc.22109 CrossRefPubMedGoogle Scholar
  29. 29.
    Di Cello F, Cope L, Li H, Jeschke J, Wang W, Baylin SB, Zahnow CA (2013) Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer. PLoS ONE 8:e68630. doi: 10.1371/journal.pone.0068630 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ogasawara N, Kojima T, Go M, Ohkuni T, Koizumi J, Kamekura R, Masaki T, Murata M, Tanaka S, Fuchimoto J, Himi T, Sawada N (2010) PPARgamma agonists upregulate the barrier function of tight junctions via a PKC pathway in human nasal epithelial cells. Pharmacol Res 61(6):489–498. doi: 10.1016/j.phrs.2010.03.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Varley CL, Garthwaite MA, Cross W, Hinley J, Trejdosiewicz LK, Southgate J (2006) PPARgamma-regulated tight junction development during human urothelial cytodifferentiation. J Cell Physiol 208:407–417. doi: 10.1002/jcp.20676 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kumei S, Motomura W, Yoshizaki T, Takakusaki K, Okumura T (2009) Troglitazone increases expression of E-cadherin and claudin 4 in human pancreatic cancer cells. Biochem Biophys Res Commun 380:614–619. doi: 10.1016/j.bbrc.2009.01.134 CrossRefPubMedGoogle Scholar
  33. 33.
    Okumura T (2010) Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol 45:1097–1102. doi: 10.1007/s00535-010-0310-9 CrossRefPubMedGoogle Scholar
  34. 34.
    Beeman N, Webb PG, Baumgartner HK (2012) Occludin is required for apoptosis when claudin-claudin interactions are disrupted. Cell Death Dis 3:e273. doi: 10.1038/cddis.2012.14 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fortier AM, Asselin E, Cadrin M (2013) Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem 288:11555–11571. doi: 10.1074/jbc.M112.428920 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marine Geoffroy
    • 1
    • 2
  • Alexandra Kleinclauss
    • 1
    • 2
  • Stéphanie Grandemange
    • 1
    • 2
  • Sébastien Hupont
    • 5
  • Michel Boisbrun
    • 3
    • 4
  • Stéphane Flament
    • 1
    • 2
  • Isabelle Grillier-Vuissoz
    • 1
    • 2
    Email author
  • Sandra Kuntz
    • 1
    • 2
  1. 1.Université de Lorraine, CRAN, UMR 7039Vandœuvre-lès-NancyFrance
  2. 2.CNRS, CRAN, UMR 7039Vandœuvre-lès-NancyFrance
  3. 3.Université de Lorraine, SRSMC, UMR 7565Vandœuvre-lès-NancyFrance
  4. 4.CNRS, SRSMC, UMR 7565Vandœuvre-lès-NancyFrance
  5. 5.CNRS, FR3209 Biologie Moléculaire Cellulaire et Thérapeutique (BMCT), Plateforme d’Imagerie Cellulaire et Tissulaire PTIBC-IBISA, Biopôle de l’Université de LorraineVandœuvre-lès-NancyFrance

Personalised recommendations