Skip to main content

Advertisement

Log in

Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Evidence on the association between dietary flavonoids and lignans and breast cancer (BC) risk is inconclusive, with the possible exception of isoflavones in Asian countries. Therefore, we investigated prospectively dietary total and subclasses of flavonoid and lignan intake and BC risk according to menopause and hormonal receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The study included 334,850 women, mostly aged between 35 and 70 years from ten European countries. At baseline, country-specific validated dietary questionnaires were used. A flavonoid and lignan food composition database was developed from the US Department of Agriculture, the Phenol-Explorer and the UK Food Standards Agency databases. Cox regression models were used to analyse the association between dietary flavonoid/lignan intake and the risk of developing BC. During an average 11.5-year follow-up, 11,576 incident BC cases were identified. No association was observed between the intake of total flavonoids [hazard ratio comparing fifth to first quintile (HRQ5–Q1) 0.97, 95 % confidence interval (CI): 0.90–1.04; P trend = 0.591], isoflavones (HRQ5–Q1 1.00, 95 % CI: 0.91–1.10; P trend = 0.734), or total lignans (HRQ5–Q1 1.02, 95 % CI: 0.93–1.11; P trend = 0.469) and overall BC risk. The stratification of the results by menopausal status at recruitment or the differentiation of BC cases according to oestrogen and progesterone receptors did not affect the results. This study shows no associations between flavonoid and lignan intake and BC risk, overall or after taking into account menopausal status and BC hormone receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

EPIC:

European prospective investigation into cancer and nutrition

ER:

Oestrogen receptor

PR:

Progesterone receptor

References

  1. Chen WY, Colditz GA (2007) Risk factors and hormone-receptor status: epidemiology, risk-prediction models and treatment implications for breast cancer. Nat Clin Pract Oncol 4(7):415–423

    Article  PubMed  Google Scholar 

  2. Minami CA, Chung DU, Chang HR (2011) Management options in triple-negative breast cancer. Breast Cancer (Auckl) 5:175–199

    Google Scholar 

  3. Collins LC, Marotti JD, Gelber S et al (2012) Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat 131(3):1061–1066

    Article  PubMed  CAS  Google Scholar 

  4. Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58(8):4959–4969

    Article  PubMed  CAS  Google Scholar 

  5. Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19(5):895–909

    PubMed  Google Scholar 

  6. Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20(2):187–210

    Article  PubMed  CAS  Google Scholar 

  7. Rice S, Whitehead SA (2008) Phytoestrogens oestrogen synthesis and breast cancer. J Steroid Biochem Mol Biol 108(3–5):186–195

    Article  PubMed  CAS  Google Scholar 

  8. Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE (2003) Phytoestrogens and breast cancer risk. Review of the epidemiological evidence. Breast Cancer Res Treat 77(2):171–183

    Article  PubMed  CAS  Google Scholar 

  9. Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M (2013) Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One 8(1):e54318

    Article  PubMed  Google Scholar 

  10. Wang L, Lee IM, Zhang SM, Blumberg JB, Buring JE, Sesso HD (2009) Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr 89(3):905–912

    Article  PubMed  CAS  Google Scholar 

  11. Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD (2005) Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer 114(4):628–633

    Article  PubMed  CAS  Google Scholar 

  12. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76(3):560–568

    PubMed  CAS  Google Scholar 

  13. Arts IC, Jacobs DR Jr, Gross M, Harnack LJ, Folsom AR (2002) Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women’s Health Study (United States). Cancer Causes Control 13(4):373–382

    Article  PubMed  Google Scholar 

  14. Knekt P, Jarvinen R, Seppanen R, Hellövaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146(3):223–230

    Article  PubMed  CAS  Google Scholar 

  15. Hedelin M, Lof M, Olsson M, Adlercreutz H, Sandin S, Weiderpass E (2008) Dietary phytoestrogens are not associated with risk of overall breast cancer but diets rich in coumestrol are inversely associated with risk of estrogen receptor and progesterone receptor negative breast tumors in Swedish women. J Nutr 138(5):938–945

    PubMed  CAS  Google Scholar 

  16. Dong JY, Qin LQ (2011) Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125(2):315–323

    Article  PubMed  CAS  Google Scholar 

  17. Lee SA, Wen W, Xiang YB et al (2007) Assessment of dietary isoflavone intake among middle-aged Chinese men. J Nutr 137(4):1011–1016

    PubMed  Google Scholar 

  18. Velentzis LS, Woodside JV, Cantwell MM, Leathem AJ, Keshtgar MR (2008) Do phytoestrogens reduce the risk of breast cancer and breast cancer recurrence? What clinicians need to know. Eur J Cancer 44(13):1799–1806

    Article  PubMed  CAS  Google Scholar 

  19. Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92(1):141–153

    Article  PubMed  CAS  Google Scholar 

  20. Velentzis LS, Cantwell MM, Cardwell C, Keshtgar MR, Leathem AJ, Woodside JV (2009) Lignans and breast cancer risk in pre- and post-menopausal women: meta-analyses of observational studies. Br J Cancer 100(9):1492–1498

    Article  PubMed  CAS  Google Scholar 

  21. Touillaud MS, Thiebaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2007) Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99(6):475–486

    Article  PubMed  CAS  Google Scholar 

  22. Sonestedt E, Borgquist S, Ericson U, Gullberg B, Olsson H, Adlercreutz H, Landberg G, Wirfält E (2008) Enterolactone is differently associated with estrogen receptor beta-negative and -positive breast cancer in a Swedish nested case–control study. Cancer Epidemiol Biomarkers Prev 17(11):3241–3251

    Article  PubMed  CAS  Google Scholar 

  23. Olsen A, Knudsen KE, Thomsen BL, Loft S, Stripp C, Overvad K, Møller S, Tjønneland A (2004) Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol Biomarkers Prev 13(12):2084–2089

    PubMed  CAS  Google Scholar 

  24. Ward HA, Kuhnle GG, Mulligan AA, Lentjes MA, Luben RN, Khaw KT (2010) Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr 91(2):440–448

    Article  PubMed  CAS  Google Scholar 

  25. Riboli E, Hunt KJ, Slimani N et al (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5(6B):1113–1124

    Article  PubMed  CAS  Google Scholar 

  26. Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2012) Dietary intakes and food sources of phytoestrogens in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Eur J Clin Nutr 66(8):932–941

    Article  PubMed  CAS  Google Scholar 

  27. Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2013) Differences in dietary intakes, food sources, and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br J Nutr. doi:10.1017/S0007114512003273

  28. Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26(Suppl 1):S6–S14

    Article  PubMed  Google Scholar 

  29. Slimani N, Deharveng G, Unwin I et al (2007) The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC Study. Eur J Clin Nutr 61(9):1037–1056

    Article  PubMed  CAS  Google Scholar 

  30. Haftenberger M, Lahmann PH, Panico S et al (2002) Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5(6B):1147–1162

    Article  PubMed  CAS  Google Scholar 

  31. Layfield LJ, Gupta D, Mooney EE (2000) Assessment of Tissue Estrogen and Progesterone Receptor Levels: a Survey of Current Practice, Techniques, and Quantitation Methods. Breast J 6(3):189–196

    Article  PubMed  CAS  Google Scholar 

  32. U.S. Department of Agriculture (2004) USDA Database for the proanthocyanidin content of selected foods. USDA, Beltsville

  33. U.S. Department of Agriculture (2007) USDA Database for the flavonoid content of selected foods. USDA, Beltsville

  34. U.S. Department of Agriculture (2008) USDA Database for the isoflavone content of selected foods. USDA, Beltsville

  35. Neveu V, Perez-Jimenez J, Vos F et al (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010:bap024. doi:10.1093/database/bap024

  36. Knaze V, Zamora-Ros R, Luján-Barroso L et al (2012) Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br J Nutr 108(6):1095–1108

    Article  PubMed  CAS  Google Scholar 

  37. Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2011) Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br J Nutr 106(7):1090–1099

    Article  PubMed  CAS  Google Scholar 

  38. Zamora-Ros R, Knaze V, Lujan-Barroso L et al (2011) Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24-hour dietary recall cohort. Br J Nutr 106(12):1915–1925

    Article  PubMed  CAS  Google Scholar 

  39. Schoenfeld D (1980) Chi squared goodness of fit tests for the proportional hazards regression model. Biometrika 67(1):145–153

    Article  Google Scholar 

  40. Thiebaut AC, Benichou J (2004) Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: a simulation study. Stat Med 23(24):3803–3820

    Article  PubMed  Google Scholar 

  41. Romieu I, Ferrari P, Rinaldi S et al (2012) Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr 96(2):345–355

    Article  PubMed  CAS  Google Scholar 

  42. Willett W, Sampfer MJ (1986) Total energy intake: implications for epidemiological analyses. Am J Epidemiol 124(1):17–27

    PubMed  CAS  Google Scholar 

  43. Iwasaki M, Inoue M, Sasazuki S, Miura T, Sawada N, Yamaji T, Shimazu T, Willett WC, Tsugane S (2010) Plasma tea polyphenol levels and subsequent risk of breast cancer among Japanese women: a nested case–control study. Breast Cancer Res Treat 124(3):827–834

    Article  PubMed  CAS  Google Scholar 

  44. Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165(5):514–523

    Article  PubMed  Google Scholar 

  45. Touvier M, Druesne-Pecollo N, Kesse-Guyot E, Andreeva VA, Fezeu L, Galan P, Hercberg S, Latino-Martel P (2013) Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat 137(1):225–236

    Article  PubMed  Google Scholar 

  46. Keinan-Boker L, van der Schouw YT, Grobbee DE, Peeters PH (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79(2):282–288

    PubMed  CAS  Google Scholar 

  47. Travis RC, Allen NE, Appleby PN, Spencer EA, Roddam AW, Key TJ (2006) A prospective study of vegetarianism and isoflavone intake in relation to breast cancer risk in British women. Int J Cancer 122(3):705–710

    Article  Google Scholar 

  48. Qin LQ, Xu JY, Wang PY, Hoshi K (2006) Soyfood intake in the prevention of breast cancer risk in women: a meta-analysis of observational epidemiological studies. J Nutr Sci Vitaminol (Tokyo) 52(6):428–436

    Article  CAS  Google Scholar 

  49. Cassidy A, Bingham S, Setchell KD (1994) Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 60(3):333–340

    PubMed  CAS  Google Scholar 

  50. Messina M, Hilakivi-Clarke L (2009) Early intake appears to be the key to the proposed protective effects of soy intake against breast cancer. Nutr Cancer 61(6):792–798

    Article  PubMed  CAS  Google Scholar 

  51. Suzuki R, Rylander-Rudqvist T, Saji S, Bergkvist L, Adlercreutz H, Wolk A (2008) Dietary lignans and postmenopausal breast cancer risk by oestrogen receptor status: a prospective cohort study of Swedish women. Br J Cancer 98(3):636–640

    Article  PubMed  CAS  Google Scholar 

  52. Thanos J, Cotterchio M, Boucher BA, Kreiger N, Thompson LU (2006) Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 17(10):1253–1261

    Article  PubMed  Google Scholar 

  53. Goodman MT, Shvetsov YB, Wilkens LR, Franke AA, Le Marchand L, Kakazu KK, Nomura AM, Henderson BE, Kolonel LN (2009) Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila) 2(10):887–894

    Article  Google Scholar 

  54. McCann SE, Kulkarni S, Trevisan M, Vito D, Nie J, Edge SB, Muti P, Freudenheim JL (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99(3):309–311

    Article  PubMed  CAS  Google Scholar 

  55. Wang L, Chen J, Thompson LU (2005) The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components. Int J Cancer 116(5):793–798

    Article  PubMed  CAS  Google Scholar 

  56. Rinaldi S, Peeters PH, Berrino F et al (2006) IGF-I, IGFBP-3 and breast cancer risk in women: the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 13(2):593–605

    Article  PubMed  CAS  Google Scholar 

  57. Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5(3):203–220

    Article  PubMed  CAS  Google Scholar 

  58. Skeie G, Braaten T, Hjartaker A et al (2009) Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition Calibration Study. Eur J Clin Nutr 63(Suppl 4):S226–S238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission: Public Health and Consumer Protection Directorate 1993–2004; Research Directorate-General 2005; Ligue contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid; German Cancer Research Center (DKFZ); German Federal Ministry of Education and Research; Danish Cancer Society: Health Research Fund (FIS) of the Spanish Ministry of Health (RTICC DR06/0020/0091); the participating regional governments from Asturias, Andalucía, Murcia, Navarra and Basque Country and the Catalan Institute of Oncology of Spain; Cancer Research UK; Medical Research Council, UK; Hellenic Health Foundation, Greece; Italian Association for Research on Cancer-AIRC-Milan, Italy; Compagnia San Paolo, Italy; Dutch Ministry of Public Health, Welfare and Sports; Dutch Ministry of Health; Dutch Prevention Funds; LK Research Funds; Dutch ZON (Zorg Onderzoek Nederland); World Cancer Research Fund (WCRF); Statistics Netherlands (The Netherlands); Swedish Cancer Society; Swedish Scientific Council; Regional Government of Skane, Sweden; and Nordforsk—Centre of Excellence programme. Some authors are partners of ECNIS, a network of excellence of the 6 Frame Program of the European Commission. R.Z.R. is thankful for a postdoctoral programme, Fondo de Investigación Sanitaria (FIS; No. CD09/00133), from the Spanish Ministry of Science and Innovation.

Conflict of interest

  The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Zamora-Ros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamora-Ros, R., Ferrari, P., González, C.A. et al. Dietary flavonoid and lignan intake and breast cancer risk according to menopause and hormone receptor status in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Breast Cancer Res Treat 139, 163–176 (2013). https://doi.org/10.1007/s10549-013-2483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2483-4

Keywords

Navigation