Skip to main content

Advertisement

Log in

Unliganded progesterone receptors attenuate taxane-induced breast cancer cell death by modulating the spindle assembly checkpoint

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Whether the presence of steroid receptors in luminal breast cancers renders them resistant to taxanes remains uncertain. Here we assess the role of progesterone receptors (PR) on taxane-induced cell death. We previously showed that estrogen receptor (ER)-positive human breast cancer cells that inducibly express PR-A or PR-B isoforms were protected from taxane-stimulated apoptosis when compared to the identical cells lacking PR. Surprisingly, PR-dependent protection occurred in the absence of progesterone, demonstrating that the unliganded receptors were biologically active. The present studies demonstrate that unliganded PR, focused on PR-A, protect breast cancer cells from taxane-stimulated apoptosis. The studies identify genes regulated by taxanes in isogenic ER-positive cells that either lack or express PR-A. We show that unliganded PR-A alters the gene expression pattern controlled by taxanes, especially multiple genes involved in the spindle assembly checkpoint, a group of proteins that insure proper attachment of microtubules to kinetochores during mitosis. Importantly, taxanes and unliganded PR regulate many of these genes in opposite directions. As a result, mitotic slippage is exacerbated by the presence of PR, leading to an increase in the number of multinucleated cells both in vitro and in xenograft tumors. We describe a simple new assay for assessing multinucleation in paraffin sections. We speculate that rather than inducing cell death, unliganded PR exploits multinucleation to promote cell survival from taxane therapy. This can be prevented with antiprogestin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ravdin PM, Burris HA III, Cook G, Eisenberg P, Kane M, Bierman WA, Mortimer J, Genevois E, Bellet RE (1995) Phase II trial of docetaxel in advanced anthracycline-resistant or anthracenedione-resistant breast cancer. J Clin Oncol 13(12):2879–2885

    PubMed  CAS  Google Scholar 

  2. Valero V, Jones SE, Von Hoff DD, Booser DJ, Mennel RG, Ravdin PM, Holmes FA, Rahman Z, Schottstaedt MW, Erban JK, Esparza-Guerra L, Earhart RH, Hortobagyi GN, Burris HA 3rd (1998) A phase II study of docetaxel in patients with paclitaxel-resistant metastatic breast cancer. J Clin Oncol 16(10):3362–3368

    PubMed  CAS  Google Scholar 

  3. Sawaki M, Ito Y, Hashimoto D, Mizunuma N, Takahashi S, Horikoshi N, Tada K, Kasumi F, Akiyama F, Sakamoto G, Imai T, Nakao A, Hatake K (2004) Paclitaxel administered weekly in patients with docetaxel-resistant metastatic breast cancer: a single-center study. Tumori 90(1):36–39

    PubMed  CAS  Google Scholar 

  4. McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785(2):96–132. doi:1016/j.bbcan.2007.10.004

    PubMed  CAS  Google Scholar 

  5. Villeneuve DJ, Hembruff SL, Veitch Z, Cecchetto M, Dew WA, Parissenti AM (2006) cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat 96(1):17–39

    Article  PubMed  CAS  Google Scholar 

  6. Chen JG, Yang CP, Cammer M, Horwitz SB (2003) Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 63(22):7891–7899

    PubMed  CAS  Google Scholar 

  7. Hernandez-Vargas H, Palacios J, Moreno-Bueno G (2007) Molecular profiling of docetaxel cytotoxicity in breast cancer cells: uncoupling of aberrant mitosis and apoptosis. Oncogene 26(20):2902–2913. doi:10.1038/sj.onc.1210102

    Article  PubMed  CAS  Google Scholar 

  8. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825. doi:10.1073/pnas.0905718106

    Article  PubMed  CAS  Google Scholar 

  9. Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA, Horwitz KB (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66(18):9308–9315

    Article  PubMed  CAS  Google Scholar 

  10. Ghersi D, Wilcken N, Simes J, Donoghue E (2005) Taxane containing regimens for metastatic breast cancer. Cochrane Database Syst Rev (2):CD003366. doi:10.1002/14651858.CD003366.pub2

  11. Henderson IC, Berry DA, Demetri GD, Cirrincione CT, Goldstein LJ, Martino S, Ingle JN, Cooper MR, Hayes DF, Tkaczuk KH, Fleming G, Holland JF, Duggan DB, Carpenter JT, Frei E 3rd, Schilsky RL, Wood WC, Muss HB, Norton L (2003) Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21(6):976–983

    Article  PubMed  CAS  Google Scholar 

  12. Sui M, Huang Y, Park BH, Davidson NE, Fan W (2007) Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res 67(11):5337–5344

    Article  PubMed  CAS  Google Scholar 

  13. Dougherty MK, Schumaker LM, Jordan VC, Welshons WV, Curran EM, Ellis MJ, El-Ashry D (2004) Estrogen receptor expression and sensitivity to paclitaxel in breast cancer. Cancer Biol Ther 3(5):460–467

    PubMed  CAS  Google Scholar 

  14. Schmidt M, Bremer E, Hasenclever D, Victor A, Gehrmann M, Steiner E, Schiffer IB, Gebhardt S, Lehr HA, Mahlke M, Hermes M, Mustea A, Tanner B, Koelbl H, Pilch H, Hengstler JG (2007) Role of the progesterone receptor for paclitaxel resistance in primary breast cancer. Br J Cancer 96(2):241–247

    Article  PubMed  CAS  Google Scholar 

  15. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357(26):2666–2676

    Article  PubMed  CAS  Google Scholar 

  16. Jacobsen BM, Schittone SA, Richer JK, Horwitz KB (2005) Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol 19(3):574–587

    Article  PubMed  CAS  Google Scholar 

  17. Jacobsen BM, Richer JK, Schittone SA, Horwitz KB (2002) New human breast cancer cells to study progesterone receptor isoform ratio effects and ligand-independent gene regulation. J Biol Chem 277(31):27793–27800

    Article  PubMed  CAS  Google Scholar 

  18. Ghatge RP, Jacobsen BM, Schittone SA, Horwitz KB (2005) The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells. Breast Cancer Res 7(6):R1036–R1050. doi:10.1186/bcr1340

    Article  PubMed  CAS  Google Scholar 

  19. Bradshaw-Pierce EL, Eckhardt SG, Gustafson DL (2007) A physiologically based pharmacokinetic model of docetaxel disposition: from mouse to man. Clin Cancer Res 13(9):2768–2776. doi:10.1158/1078-0432.CCR-06-2362

    Article  PubMed  CAS  Google Scholar 

  20. McCarthy DJ, Smyth GK (2009) Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25(6):765–771. doi:10.1093/bioinformatics/btp053

    Article  PubMed  CAS  Google Scholar 

  21. Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5(12):2963–2969. doi:10.1158/1535-7163.MCT-06-0319

    Article  PubMed  CAS  Google Scholar 

  22. Keyes BE, Yellman CM, Burke DJ (2008) Differential regulation of anaphase promoting complex/cyclosome substrates by the spindle assembly checkpoint in Saccharomyces cerevisiae. Genetics 178(1):589–591. doi:10.1534/genetics.107.083642

    Article  PubMed  CAS  Google Scholar 

  23. Magnaghi-Jaulin L, Eot-Houllier G, Fulcrand G, Jaulin C (2007) Histone deacetylase inhibitors induce premature sister chromatid separation and override the mitotic spindle assembly checkpoint. Cancer Res 67(13):6360–6367. doi:10.1158/0008-5472.CAN-06-3012

    Article  PubMed  CAS  Google Scholar 

  24. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC, O’Connell P (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369

    Article  PubMed  CAS  Google Scholar 

  25. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E, Noguchi S, Kato K (2005) Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 23(3):422–431. doi:10.1200/JCO.2005.09.078

    Article  PubMed  CAS  Google Scholar 

  26. Zembutsu H, Suzuki Y, Sasaki A, Tsunoda T, Okazaki M, Yoshimoto M, Hasegawa T, Hirata K, Nakamura Y (2009) Predicting response to docetaxel neoadjuvant chemotherapy for advanced breast cancers through genome-wide gene expression profiling. Int J Oncol 34(2):361–370

    PubMed  CAS  Google Scholar 

  27. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, Mariani G, Rodriguez J, Carcangiu M, Watson D, Valagussa P, Rouzier R, Symmans WF, Ross JS, Hortobagyi GN, Pusztai L, Shak S (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277

    Article  PubMed  CAS  Google Scholar 

  28. Schoffski P (2009) Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 14(6):559–570. doi:10.1634/theoncologist.2009-0010

    Article  PubMed  CAS  Google Scholar 

  29. Ryan BM, O’Donovan N, Duffy MJ (2009) Survivin: a new target for anti-cancer therapy. Cancer Treat Rev 35(7):553–562. doi:10.1016/j.ctrv.2009.05.003

    Article  PubMed  CAS  Google Scholar 

  30. Wood KW, Lad L, Luo L, Qian X, Knight SD, Nevins N, Brejc K, Sutton D, Gilmartin AG, Chua PR, Desai R, Schauer SP, McNulty DE, Annan RS, Belmont LD, Garcia C, Lee Y, Diamond MA, Faucette LF, Giardiniere M, Zhang S, Sun CM, Vidal JD, Lichtsteiner S, Cornwell WD, Greshock JD, Wooster RF, Finer JT, Copeland RA, Huang PS, Morgans DJ Jr, Dhanak D, Bergnes G, Sakowicz R, Jackson JR (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci USA 107(13):5839–5844. doi:10.1073/pnas.0915068107

    Article  PubMed  CAS  Google Scholar 

  31. Cheung CH, Coumar MS, Hsieh HP, Chang JY (2009) Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs 18(4):379–398. doi:10.1517/13543780902806392

    Article  PubMed  CAS  Google Scholar 

  32. Sasai K, Parant JM, Brandt ME, Carter J, Adams HP, Stass SA, Killary AM, Katayama H, Sen S (2008) Targeted disruption of Aurora A causes abnormal mitotic spindle assembly, chromosome misalignment and embryonic lethality. Oncogene 27(29):4122–4127. doi:10.1038/onc.2008.47

    Article  PubMed  CAS  Google Scholar 

  33. Schliekelman M, Cowley DO, O’Quinn R, Oliver TG, Lu L, Salmon ED, Van Dyke T (2009) Impaired Bub1 function in vivo compromises tension-dependent checkpoint function leading to aneuploidy and tumorigenesis. Cancer Res 69(1):45–54. doi:10.1158/0008-5472.CAN-07-6330

    Article  PubMed  CAS  Google Scholar 

  34. Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR, Cleveland DW (2002) Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3(3):351–365. doi:S1534580702002551[pii]

    Article  PubMed  CAS  Google Scholar 

  35. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409(6818):355–359. doi:10.1038/35053094

    Article  PubMed  CAS  Google Scholar 

  36. Musio A, Montagna C, Zambroni D, Indino E, Barbieri O, Citti L, Villa A, Ried T, Vezzoni P (2003) Inhibition of BUB1 results in genomic instability and anchorage-independent growth of normal human fibroblasts. Cancer Res 63(11):2855–2863

    PubMed  CAS  Google Scholar 

  37. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303. doi:10.1038/32688

    Article  PubMed  CAS  Google Scholar 

  38. Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty VV, Benezra R (2004) Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA 101(13):4459–4464. doi:10.1073/pnas.0306069101

    Article  PubMed  CAS  Google Scholar 

  39. Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K, Gabrielson E (2006) Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12(2):405–410. doi:10.1158/1078-0432.CCR-05-0903

    Article  PubMed  CAS  Google Scholar 

  40. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11(1):9–23. doi:10.1016/j.ccr.2006.10.019

    Article  PubMed  CAS  Google Scholar 

  41. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  42. Wysong DR, Chakravarty A, Hoar K, Ecsedy JA (2009) The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle 8(6):876–888.

    Article  PubMed  CAS  Google Scholar 

  43. Merlin JL, Bour-Dill C, Marchal S, Bastien L, Gramain MP (2000) Resistance to paclitaxel induces time-delayed multinucleation and DNA fragmentation into large fragments in MCF-7 human breast adenocarcinoma cells. Anticancer Drugs 11(4):295–302

    Article  PubMed  CAS  Google Scholar 

  44. Panvichian R, Orth K, Day ML, Day KC, Pilat MJ, Pienta KJ (1998) Paclitaxel-associated multimininucleation is permitted by the inhibition of caspase activation: a potential early step in drug resistance. Cancer Res 58(20):4667–4672

    PubMed  CAS  Google Scholar 

  45. Makarovskiy AN, Siryaporn E, Hixson DC, Akerley W (2002) Survival of docetaxel-resistant prostate cancer cells in vitro depends on phenotype alterations and continuity of drug exposure. Cell Mol Life Sci 59(7):1198–1211

    Article  PubMed  CAS  Google Scholar 

  46. Roberts JR, Allison DC, Donehower RC, Rowinsky EK (1990) Development of polyploidization in taxol-resistant human leukemia cells in vitro. Cancer Res 50(3):710–716

    PubMed  CAS  Google Scholar 

  47. Blajeski AL, Kottke TJ, Kaufmann SH (2001) A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res 270(2):277–288. doi:10.1006/excr.2001.5349

    Article  PubMed  CAS  Google Scholar 

  48. Erenpreisa J, Ivanov A, Wheatley SP, Kosmacek EA, Ianzini F, Anisimov AP, Mackey M, Davis PJ, Plakhins G, Illidge TM (2008) Endopolyploidy in irradiated p53-deficient tumour cell lines: persistence of cell division activity in giant cells expressing Aurora-B kinase. Cell Biol Int 32(9):1044–1056. doi:10.1016/j.cellbi.2008.06.003

    Article  PubMed  CAS  Google Scholar 

  49. Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116(Pt 20):4095–4106. doi:10.1242/jcs.00740

    Article  PubMed  CAS  Google Scholar 

  50. Bekier ME, Fischbach R, Lee J, Taylor WR (2009) Length of mitotic arrest induced by microtubule-stabilizing drugs determines cell death after mitotic exit. Mol Cancer Ther 8(6):1646–1654. doi:10.1158/1535-7163.MCT-08-1084

    Article  PubMed  CAS  Google Scholar 

  51. Classen S, Possinger K, Pelka-Fleischer R, Wilmanns W (1993) Effect of onapristone and medroxyprogesterone acetate on the proliferation and hormone receptor concentration of human breast cancer cells. J Steroid Biochem Mol Biol 45(4):315–319

    Article  PubMed  CAS  Google Scholar 

  52. Hackenberg R, Hannig K, Beck S, Schmidt-Rhode P, Scholz A, Schulz KD (1996) Androgen-like and anti-androgen-like effects of antiprogestins in human mammary cancer cells. Eur J Cancer 32A(4):696–701

    Article  PubMed  CAS  Google Scholar 

  53. Romieu G, Maudelonde T, Ulmann A, Pujol H, Grenier J, Cavalie G, Khalaf S, Rochefort H (1987) The antiprogestin RU486 in advanced breast cancer: preliminary clinical trial. Bull Cancer 74(4):455–461

    PubMed  CAS  Google Scholar 

  54. Maibauer RZC, Schultz-Mosgau M, Rohde B, Kuss I, Sittner W, Scherling AG (2006) Abstract #4074: First human data for ZK 230211 (ZK-PRA), a new progesterone receptor antagonist: a phase I clinical analysis of safety and pharmakokinetics in healthy postmenopausal women. Breast Cancer Res Treat 100(Supplement 1):S196

    Google Scholar 

  55. Erenpreisa J, Cragg MS (2001) Mitotic death: a mechanism of survival? A review. Cancer Cell Int 1(1):1

    Article  PubMed  Google Scholar 

  56. Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA (2000) Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int 24(9):621–633. doi:10.1006/cbir.2000.0557

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Department of Defense Breast Cancer Research Program BC0610503 (B.M.J.), and the National Cancer Institute CA026869-31, the Avon Foundation for Women, the Breast Cancer Research Foundation, and the National Foundation for Cancer Research (K.B.H.). Supported in part by the Gene Expression, Real-time PCR and Flow Cytometry Cores of the University of Colorado Cancer Center (P30 CA046934) and by the Advanced Light Microscopy Core. We thank Toni Mufford of the animal care facility for tail-vein injections and Robert W. Burke for helpful discussions.

Conflict of interest

The authors have no conflict of interest and nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta M. Jacobsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 68 kb)

Supplementary material 2 (XLS 104 kb)

Supplementary material 3 (XLS 56 kb)

10549_2011_1399_MOESM4_ESM.tif

Supplemental Figure S1- Y iA cells inducibly express PR-A in the absence or presence of docetaxel. Immunoblot of cells treated with vehicle or pon-A to induce PR expression, with or without docetaxel. Beta-actin is shown as a loading control

Supplementary material 5 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badtke, M.M., Jambal, P., Dye, W.W. et al. Unliganded progesterone receptors attenuate taxane-induced breast cancer cell death by modulating the spindle assembly checkpoint. Breast Cancer Res Treat 131, 75–87 (2012). https://doi.org/10.1007/s10549-011-1399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1399-0

Keywords

Navigation