Advertisement

Brain Topography

, Volume 32, Issue 2, pp 255–270 | Cite as

Functional Brain Connectivity Revealed by Sparse Coding of Large-Scale Local Field Potential Dynamics

  • Han Wang
  • Kun Xie
  • Li Xie
  • Xiang Li
  • Meng Li
  • Cheng Lyu
  • Hanbo Chen
  • Yaowu Chen
  • Xuesong Liu
  • Joe Tsien
  • Tianming LiuEmail author
Original Paper

Abstract

Exploration of brain dynamics patterns has attracted increasing attention due to its fundamental significance in understanding the working mechanism of the brain. However, due to the lack of effective modeling methods, how the simultaneously recorded LFP can inform us about the brain dynamics remains a general challenge. In this paper, we propose a novel sparse coding based method to investigate brain dynamics of freely-behaving mice from the perspective of functional connectivity, using super-long local field potential (LFP) recordings from 13 distinct regions of the mouse brain. Compared with surrogate datasets, six and four reproducible common functional connectivities were discovered to represent the space of brain dynamics in the frequency bands of alpha and theta respectively. Modeled by a finite state machine, temporal transition framework of functional connectivities was inferred for each frequency band, and evident preference was discovered. Our results offer a novel perspective for analyzing neural recording data at such high temporal resolution and recording length, as common functional connectivities and their transition framework discovered in this work reveal the nature of the brain dynamics in freely behaving mice.

Keywords

Local field potential (LFP) Brain dynamics Sparse coding Freely behaving Volume conduction 

Notes

Acknowledgements

H Wang was supported by the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China (Grant No. 31627802). T. Liu is supported by NIH R01 DA-033393, NIH R01 AG-042599, NSF CAREER Award IIS-1149260, NSF BME-1302089, NSF BCS-1439051 and NSF DBI-1564736. L Xie is supported by the Zhejiang Province Science and Technology Planning Project (Grant No. 2016C33069).

Supplementary material

10548_2018_682_MOESM1_ESM.pdf (262 kb)
Supplementary material 1 (PDF 262 KB)

References

  1. Adrian ED, Moruzzi G (1939) Impulses in the pyramidal tract. J Physiol 97:153–199Google Scholar
  2. Allen EA, Damaraju E, Eichele T, Wu L, Calhoun VD (2017) EEG signatures of dynamic functional network connectivity states. Brain Topogr 2017:1–16Google Scholar
  3. Belloy ME, Naeyaert M, Abbas A, Shah D, Vanreusel V, van Audekerke J, Keilholz SD, Keliris GA, Van der Linden A, Verhoye M (2018) Dynamic resting state fMRI analysis in mice reveals a set of Quasi-periodic patterns and illustrates their relationship with the global signal. NeuroImage 180:463–484Google Scholar
  4. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739Google Scholar
  5. Buchthal F, Guld C, Rosenfalck P (1957) Volume conduction of the spike of the motor unit potential investigated with a new type of multielectrode. Acta Physiol Scand 38:331–354Google Scholar
  6. Bush G, Luu P, Posner AMI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215Google Scholar
  7. Calhoun VD, Miller R, Pearlson G, Adalı T (2014) The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84:262–274Google Scholar
  8. Chen G, Wang LP, Tsien JZ (2009) Neural population-level memory traces in the mouse hippocampus. PLoS ONE 4:e8256Google Scholar
  9. Chen Y, Liu X, Li S, Wan H (2018) Decoding pigeon behavior outcomes using functional connections among local field potentials. Comput Intell Neurosci 2018:1–13Google Scholar
  10. Czajkowski R, Jayaprakash B, Wiltgen B, Rogerson T, Guzmankarlsson MC, Barth AL, Trachtenberg JT, Silva AJ (2014) Encoding and storage of spatial information in the retrosplenial cortex. Proc Natl Acad Sci USA 111:8661–8666Google Scholar
  11. Da Silva FL (2013) EEG and MEG: relevance to Neuroscience. Neuron 80:1112–1128Google Scholar
  12. Di MA, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747Google Scholar
  13. Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199Google Scholar
  14. Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via l(1) minimization. Proc Natl Acad Sci USA 100:2197–2202Google Scholar
  15. Eichenbaum H (2017) Memory systems. In: Learning and memory: a comprehensive reference, vol 3, Academic Press, CambridgeGoogle Scholar
  16. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711Google Scholar
  17. Franklin KBJ, Paxinos G (2001) The mouse brain: In: Stereotaxic coordinates. Academic Press, CambridgeGoogle Scholar
  18. Friston KJ, Harrison L, Penny WD (2003) Dynamic causal modeling. Neuroimage 19:1273–1302Google Scholar
  19. Fröhlich F (2016) Network neuroscience. Academic Press, CambridgeGoogle Scholar
  20. Garcia DL, Stieben J, Perez VJ, Shanker S (2013) The imaginary part of coherency in autism: differences in cortical functional connectivity in preschool children. PLoS ONE 8:e75941Google Scholar
  21. Gigg J, Finch DM, O Mara SM (2000) Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo. Brain Res 884:35–50Google Scholar
  22. Gilbert CD, Sigman AM (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696Google Scholar
  23. Grandjean J, Preti MG, Bolton TAW, Buerge M, Seifritz E, Pryce CR, Van De Ville D, Rudin M (2017) Dynamic reorganization of intrinsic functional networks in the mouse brain. NeuroImage 152:497–508Google Scholar
  24. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Eur J Physiol 391:85–100Google Scholar
  25. He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58:1918–1931Google Scholar
  26. Hu M, Liang H (2013) Perceptual suppression revealed by adaptive multi-scale entropy analysis of local field potential in monkey visual cortex. Int J Neural Syst 23:1350005Google Scholar
  27. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106Google Scholar
  28. Kajikawa Y, Schroeder CE (2011) How local is the local field potential? Neuron 72:847–858Google Scholar
  29. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41Google Scholar
  30. Keilholz SD (2014) The neural basis of time-varying resting-state functional connectivity. Brain Connect 4:769–779Google Scholar
  31. Khadem A, Hossein-Zadeh GA (2013) Comparing the robustness of brain connectivity measures to volume conduction artifact. Biomed Eng 2013:209–214Google Scholar
  32. Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JD, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T (2013) Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci USA 110:3107–3112Google Scholar
  33. Khawaja FA, Tsui JMG, Pack CC (2009) Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J Neurosci 29:13702–13709Google Scholar
  34. Kinnavane L, Amin E, Olartesánchez CM, Aggleton JP (2016) Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 26:1393–1413Google Scholar
  35. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57Google Scholar
  36. Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M (1999) A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211Google Scholar
  37. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16:41–48Google Scholar
  38. Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24:810–821Google Scholar
  39. Kuang H, Lin L, Tsien JZ (2010) Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine. PLoS ONE 5:e15209Google Scholar
  40. Kuruvilla MV, Ainge JA (2017) Lateral entorhinal cortex lesions impair local spatial frameworks. Front Syst Neurosci 11:30Google Scholar
  41. Lee M, Shin HS, Choi JH (2009) Simultaneous recording of brain activity and functional connectivity in the mouse brain. IEEE Eng Med Biol Soc 2009:2934–2936Google Scholar
  42. Li X, Lim C, Li K, Guo L, Liu T (2013) Detecting brain state changes via fiber-centered functional connectivity analysis. Neuroinformatics 11:193–210Google Scholar
  43. Li X, Zhu D, Jiang X, Jin C, Zhang X, Guo L, Zhang J, Hu X, Li L, Liu T (2014) Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum Brain Mapp 35:1761–1778Google Scholar
  44. Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ (2005) Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. Proc Natl Acad Sci USA 102:6125–6130Google Scholar
  45. Lin L, Chen G, Xie K, Zaia KA, Zhang S, Tsien JZ (2006) Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods 155:28–38Google Scholar
  46. Lin B, Li Q, Sun Q, Lai MJ, Davidson I, Fan W, Ye J (2014) Stochastic coordinate coding and its application for drosophila gene expression pattern annotation. Comput Sci arXiv:1407.8147Google Scholar
  47. Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. NeuroImage 115:281–291Google Scholar
  48. Liu T (2011) A few thoughts on brain ROIs. Brain Imaging Behav 5:189–202Google Scholar
  49. Lopour BA, Staba RJ, Stern JM, Fried I, Ringach DL (2016) Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials. J Neural Eng 13:26031Google Scholar
  50. Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487Google Scholar
  51. Mechling AE, Hübner NS, Lee H, Hennig J, von Elverfeldt D, Harsan L (2014) Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI. NeuroImage 96:203–215Google Scholar
  52. Mueller S, Wang D, Fox M, Yeo BTT, Sepulcre J, Sabuncu M, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77:586–595Google Scholar
  53. Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30:99Google Scholar
  54. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, Mchugh TJ, Rodriguez BV, Chittajallu R, Iwamoto KS, Mcbain CJ (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201Google Scholar
  55. Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12:70–76Google Scholar
  56. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307Google Scholar
  57. O Mara S (2015) The connected hippocampus. In: Progress in brain research, vol 219. Elsevier, AmsterdamGoogle Scholar
  58. O’Mara S (2005) The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 207:271–282Google Scholar
  59. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609Google Scholar
  60. Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487Google Scholar
  61. Ou J, Lian Z, Xie L, Li X, Wang P, Hao Y, Zhu D, Jiang R, Wang Y, Chen Y, Zhang J, Liu T (2014) Atomic dynamic functional interaction patterns for characterization of ADHD. Hum Brain Mapp 35:5262–5278Google Scholar
  62. Ou J, Xie L, Jin C, Li X, Zhu D, Jiang R, Chen Y, Zhang J, Li L, Liu T (2015a) Characterizing and differentiating brain state dynamics via hidden markov models. Brain Topogr 28:666–679Google Scholar
  63. Ou J, Xie L, Li X, Zhu D, Terry DP, Puente AN, Jiang R, Chen Y, Wang L, Shen D, Zhang J, Miller LS, Liu T (2015b) Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment. Brain Imaging Behav 9:663–677Google Scholar
  64. Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA 87:256–259Google Scholar
  65. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136Google Scholar
  66. Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD (2009) Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci 30:877–888Google Scholar
  67. Qi D, Xiao Z, Liu S, Jiao Y (2017) Functional connectivity analysis from theta band of multi local field potentials on prefrontal cortex of rat during working memory task. In: International Conference on Intelligent Human-Machine Systems and Cybernetics, pp 30–34Google Scholar
  68. Ray S, Maunsell JHR (2011) Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci 31:12674–12682Google Scholar
  69. Ryali S, Chen T, Supekar K, Menon V (2012) Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. Neuroimage 59:3852Google Scholar
  70. Sanchez Bornot JM, Wong-Lin K, Ahmad AL, Prasad G (2018) Robust EEG/MEG based functional connectivity with the envelope of the imaginary coherence: sensor space analysis. Brain Topogr 2018:1–22Google Scholar
  71. Sander TH, Bock A, Leistner S, Kuhn A, Trahms L (2010) Coherence and imaginary part of coherency identifies cortico-muscular and cortico-thalamic coupling. IEEE Eng Med Biol Soc 2010:1714–1717Google Scholar
  72. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:15–18Google Scholar
  73. Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439:978–982Google Scholar
  74. Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 109:3131–3136Google Scholar
  75. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193Google Scholar
  76. Stitt I, Hollensteiner KJ, Galindo-Leon E, Pieper F, Fiedler E, Stieglitz T, Engler G, Nolte G, Engel AK (2017) Dynamic reconfiguration of cortical functional connectivity across brain states. Sci Rep 7:8797Google Scholar
  77. Tomescu MI, Rihs TA, Robert B, Juliane B, Anna C, Frédéric G, Maude S, Martin D, Stephan E, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157:175Google Scholar
  78. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14:72–80Google Scholar
  79. Van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35Google Scholar
  80. Van De Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–18184Google Scholar
  81. van den Broek SP, Reinders F, Donderwinkel M, Peters MJ (1998) Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol 106:522–534Google Scholar
  82. Vidalgonzalez I, Vidalgonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728Google Scholar
  83. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage 31:496–504Google Scholar
  84. Wei J, Bai W, Liu T, Tian X (2015) Functional connectivity changes during a working memory task in rat via NMF analysis. Front Behav Neurosci 9:2Google Scholar
  85. Williams R (2010) The human connectome: just another ‘ome? Lancet Neurol 9:238–239Google Scholar
  86. Wilson DIG, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA (2013) Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus 23:352–366Google Scholar
  87. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227Google Scholar
  88. Xavier GF, Costa VC (2009) Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:762–773Google Scholar
  89. Xie K, Fox GE, Liu J, Tsien JZ (2016) 512-channel and 13-region simultaneous recordings coupled with optogenetic manipulation in freely behaving mice. Front Syst Neurosci 10:48Google Scholar
  90. Ye X, Kapeller-Libermann D, Travaglia A, Inda MC, Alberini CM (2017) Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci 20:52–61Google Scholar
  91. Zhang H, Chen G, Kuang H, Tsien JZ (2013) Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus. PLoS ONE 8:e79454Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Han Wang
    • 1
  • Kun Xie
    • 2
  • Li Xie
    • 3
  • Xiang Li
    • 4
  • Meng Li
    • 2
  • Cheng Lyu
    • 4
  • Hanbo Chen
    • 4
  • Yaowu Chen
    • 5
  • Xuesong Liu
    • 6
  • Joe Tsien
    • 2
  • Tianming Liu
    • 4
    Email author
  1. 1.College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
  2. 2.Brain and Behavior Discovery Institute, Medical College of GeorgiaAugusta UniversityAugustaUSA
  3. 3.The State Key Laboratory of Industrial Control TechnologyZhejiang UniversityHangzhouChina
  4. 4.Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterUniversity of GeorgiaAthensUSA
  5. 5.Zhejiang University Embedded System Engineering Research CenterMinistry of Education of ChinaHangzhouChina
  6. 6.Zhejiang Provincial Key Laboratory for Network Multimedia TechnologiesZhejiang UniversityHangzhouChina

Personalised recommendations