Skip to main content
Log in

Asymmetric Weighting to Optimize Regional Sensitivity in Combined fMRI-MEG Maps

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) are neuroimaging techniques that measure inherently different physiological processes, resulting in complementary estimates of brain activity in different regions. Combining the maps generated by each technique could thus provide a richer understanding of brain activation. However, present approaches to integration rely on a priori assumptions, such as expected patterns of brain activation in a task, or use fMRI to bias localization of MEG sources, diminishing fMRI-invisible sources. We aimed to optimize sensitivity to neural activity by developing a novel method of integrating data from the two imaging techniques. We present a data-driven method of integration that weights fMRI and MEG imaging data by estimates of data quality for each technique and region. This method was applied to a verbal object recognition task. As predicted, the two imaging techniques demonstrated sensitivity to activation in different regions. Activity was seen using fMRI, but not MEG, throughout the medial temporal lobes. Conversely, activation was seen using MEG, but not fMRI, in more lateral and anterior temporal lobe regions. Both imaging techniques were sensitive to activation in the inferior frontal gyrus. Importantly, integration maps retained activation from individual activation maps, and showed an increase in the extent of activation, owing to greater sensitivity of the integration map than either fMRI or MEG alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC-19:716–723. doi:10.1109/TAC.1974.1100705

  • Bar M, Tootell R, Schacter D, Greve D (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29:529–535

    Article  PubMed  CAS  Google Scholar 

  • Bardouille T, Krishnamurthy SV, Hajra SG, D’Arcy RCN (2012) Improved localization accuracy in magnetic source imaging using a 3-D laser scanner. IEEE Trans Biomed Eng 59:3491–3497. doi:10.1109/TBME.2012.2220356

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes

  • Bellgowan PSF, Buffalo EA, Bodurka J, Martin A (2009) Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learn Mem 16:433–438. doi:10.1101/lm.1357309.Freely

    Article  PubMed  PubMed Central  Google Scholar 

  • Bojak I, Oostendorp T (2011) Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos Trans R Soc 369:3785–3801. doi:10.1098/rsta.2011.0080

    Article  CAS  Google Scholar 

  • Bonelli SB, Powell R, Thompson PJ et al (2011) Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy. Epilepsy Res 95:246–254. doi:10.1016/j.eplepsyres.2011.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewer KD, Rioux JA, D’Arcy RCN et al (2009) Asymmetric spin-echo (ASE) spiral improves BOLD fMRI in inhomogeneous regions. NMR Biomed 22:654–662. doi:10.1002/nbm.1380

    Article  PubMed  Google Scholar 

  • Brewer KD, Rioux JA, Klassen M et al (2012) Signal displacement in spiral-in acquisitions: simulations and implications for imaging in SFG regions. Magn Reson Imaging 30:753–763. doi:10.1016/j.mri.2012.02.014

    Article  PubMed  Google Scholar 

  • Cheyne D, Bostan AC, Gaetz W, Pang EW (2007) Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol 118:1691–1704

    Article  PubMed  Google Scholar 

  • Chouinard PA, Whitwell RL, Goodale MA (2009) The lateral-occipital and the inferior-frontal cortex play different roles during the naming of visually presented objects. Hum Brain Mapp 30:3851–3864. doi:10.1002/hbm.20812

    Article  PubMed  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173. doi:10.1006/cbmr.1996.0014

    Article  PubMed  CAS  Google Scholar 

  • D’Arcy RCN, Bardouille T, Newman AJ et al (2012) Spatial MEG laterality maps for language: clinical applications in epilepsy. Hum Brain Mapp 34:1749–1760. doi:10.1002/hbm.22024

    Article  PubMed  Google Scholar 

  • Dale AM, Liu AK, Fischl BR et al (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  PubMed  CAS  Google Scholar 

  • Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Devlin JT, Russell RP, Davis MH et al (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11:589–600. doi:10.1006/nimg.2000.0595

    Article  PubMed  CAS  Google Scholar 

  • Dixon P (2008) Models of accuracy in repeated-measures designs. J Mem Lang 59:447–456. doi:10.1016/j.jml.2007.11.004

    Article  Google Scholar 

  • Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. Int J Psychophysiol 73:43–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujimaki N, Hayakawa T, Nielsen M et al (2002) An fMRI-constrained MEG source analysis with procedures for dividing and grouping activation. Neuroimage 17:324–343

    Article  PubMed  Google Scholar 

  • Geissler A, Gartus A, Foki T et al (2007) Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25:1263–1270. doi:10.1002/jmri.20935

    Article  PubMed  Google Scholar 

  • Greene AJ, Gross WL, Elsinger CL, Rao SM (2006) An FMRI analysis of the human hippocampus: inference, context, and task awareness. J Cogn Neurosci 18:1156–1173. doi:10.1162/jocn.2006.18.7.1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41:1409–1422

    Article  PubMed  CAS  Google Scholar 

  • Grummich P, Nimsky C, Pauli E et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32:1793–1803. doi:10.1016/j.neuroimage.2006.05.034

    Article  PubMed  Google Scholar 

  • Hämäläinen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36:165–171. doi:10.1109/10.16463

    Article  PubMed  Google Scholar 

  • Hamalainen M, Hari R, Ilmoniemi RJ et al (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497. doi:10.1103/RevModPhys.65.413

  • Henson RN (2007) Efficient experimental design for fMRI. In: Penny WD, Friston KJ, Ashburner JT, et al (eds) Stat. Parametr. Mapp. Anal. Funct. brain images, 1st edn. Academic Press, Waltham, USA, pp 193–210

  • Henson RN, Flandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841. doi:10.1006/nimg.2002.1132

    Article  PubMed  Google Scholar 

  • Kim JS, Chung CK (2008) Language lateralization using MEG beta frequency desynchronization during auditory oddball stimulation with one-syllable words. Neuroimage 42:1499–1507. doi:10.1016/j.neuroimage.2008.06.001

    Article  PubMed  Google Scholar 

  • Kobayashi T, Kuriki S (1999) Principal component elimination method for the improvement of in evoked neuromagnetic field measurements. IEEE Trans Biomed Eng 46:951–958

    Article  PubMed  CAS  Google Scholar 

  • Lagerlund TD, Shardbrough FW, Busacker NE (1997) Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J Clin Neurophysiol 14:73–82

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Kecman F, He B (2006) Effects of fMRI-EEG mismatches in cortical current density estimation integrating fMRI and EEG: a simulation study. Clin Neurophysiol 117:1610–1622

    Article  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK, Pauls J, Augath M et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157. doi:10.1038/35084005

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Ou W, Nummenmaa A, Ahveninen J et al (2010) Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. Neuroimage 52:97–108. doi:10.1016/j.neuroimage.2010.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang EW, Wang F, Malone M et al (2011) Localization of Broca’s area using verb generation tasks in the MEG: validation against fMRI. Neurosci Lett 490:215–219. doi:10.1016/j.neulet.2010.12.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quraan MA, Moses SN, Hung Y et al (2011) Detection and localization of hippocampal activity using beamformers with MEG: a detailed investigation using simulations and empirical data. Hum Brain Mapp 32:812–827

    Article  PubMed  Google Scholar 

  • Riggs L, Moses SN, Bardouille T et al (2009) A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography. Neuroimage 45:627–642. doi:10.1016/j.neuroimage.2008.11.018

    Article  PubMed  Google Scholar 

  • Rossion B, Pourtois G (2004) Revisiting Snodgrass and Vanderwart’s object pictorial set: the role of surface detail in basic-level object recognition. Perception 33:217–236

    Article  PubMed  Google Scholar 

  • Sekihara K, Nagarajan SS, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51:1726–1734

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi:10.1002/hbm.10062

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219. doi:10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  PubMed  CAS  Google Scholar 

  • Stark CE, Squire LR (2000) Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J Neurosci 20:7776–7781

    PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system—an approach to cerebral imaging. Thieme Medical Publishers, New York

    Google Scholar 

  • Taulu S, Kajola M, Simola J (2004) Suppression of interference and artifacts by the signal space separation method. Brain Topogr 16:275

    Google Scholar 

  • Tremblay A, Ransijn J (2013) LMER convenience functions: a suite of functions to back-fit fixed effects and forward-fit random effects, as well as other miscellaneous functions

  • Vrba J, Taulu S, Nenonen J (2010) Signal space separation beamformer. Brain Topogr 23:128–133. doi:10.1007/s10548-009-0120-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittaker E (1951) A history of the theories of Aether and electricity 34

  • Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. Neuroimage 14:1370–1386. doi:10.1006/nimg.2001.0931

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. McWhinney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McWhinney, S.R., Bardouille, T., D’Arcy, R.C.N. et al. Asymmetric Weighting to Optimize Regional Sensitivity in Combined fMRI-MEG Maps. Brain Topogr 29, 1–12 (2016). https://doi.org/10.1007/s10548-015-0457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-015-0457-z

Keywords

Navigation