Advertisement

Organized Turbulence in a Cold-Air Outbreak: Evaluating a Large-Eddy Simulation with Respect to Airborne Measurements

  • Pierre-Etienne BrilouetEmail author
  • Pierre Durand
  • Guylaine Canut
  • Nadia Fourrié
Research Article
  • 27 Downloads

Abstract

Cold-air outbreaks (CAO) lead to intense air–sea interactions, the appropriate representation of which are fundamental for climate modelling and numerical weather forecasting. We analyze a CAO event with low-level wind speeds of approximately 25 m s\(^{-1}\) observed in the north-western Mediterranean Sea. The marine atmospheric boundary layer (MABL) was sampled with an aircraft equipped for turbulence measurements, revealing the organization of the MABL flow in coherent structures oriented along the mean wind direction, which was then simulated in two steps. First, a one-dimensional simulation enabled the determination of the forcing terms (particularly horizontal advection) required to adequately reproduce the vertical structure of the MABL flow. These terms were computed from a limited-area forecast model in operation during the entire field campaign. Then, a large-eddy simulation (LES) was performed during the well-established phase of the CAO event. The LES output is validated with respect to airborne data, not only with respect to the mean wind-speed and thermodynamic profiles, but also the turbulence statistics and coherent structures. The validated LES results enable description of the turbulent field as well as the coherent structures. The main discrepancy is a considerable underestimation of the simulated evaporation (computed with a parametrization of the turbulent surface fluxes), and hence of the moisture fluctuations throughout the boundary layer. Several possible explanations may explain this underestimation. The structure of the boundary layer is nonetheless well reproduced by the LES model, including the organized structures and their characteristic scales, such as the structure wavelength, orientation, and aspect ratio, which closely agree with observations. A conditional-sampling analysis enables determination of the contribution of the coherent structures to the vertical exchange. Although they occupy a limited fractional area, organized structures are the primary contributors to the turbulent exchange.

Keywords

Cold-air outbreak Large-eddy simulation Marine atmospheric boundary layer Turbulence organization 

Notes

Acknowledgements

Many people were involved in the realization of the aircraft mission of HyMeX-SOP2 and in the data processing. The aircraft was operated by the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE). We also thank the TRAMM team from CNRM (Centre National de la Recherche Météorologique) at Météo-France for their help in computing the data. This work is a contribution to the HyMeX program (HYdrological cycle in the Mediterranean EXperiment, www.hymex.org) through the ASICS-MED project (Air–Sea Interaction and Coupling with Submesoscale structures in the MEDiterranean), ANR-12-BS06-0003). The authors acknowledge Météo-France for supplying the data and the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrénées) for their help in accessing the data (accessible on http://mistrals.sedoo.fr/HyMeX/). We also gratefully thank C. Lac, F. Couvreux and T. Bergot for their help with the numerical simulations and M.-N. Bouin (CMM/CRNM) for providing us the buoy-derived bulk fluxes.

References

  1. Agee E, Gluhovsky A (1999) LES model sensitivities to domains, grids, and large-eddy timescales. J Atmos Sci 56(4):599–604.  https://doi.org/10.1175/1520-0469(1999)056<0599:LMSTDG>2.0.CO;2 CrossRefGoogle Scholar
  2. Andreas EL, Persson POG, Hare JE (2008) A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J Phys Oceanogr 38(7):1581–1596.  https://doi.org/10.1175/2007JPO3813.1 CrossRefGoogle Scholar
  3. Andreas EL, Mahrt L, Vickers D (2015) An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Q J R Meteorol Soc 141(687):642–654.  https://doi.org/10.1002/qj.2424 CrossRefGoogle Scholar
  4. Andreas EL, Vlahos P, Monahan E (2016) The potential role of sea spray droplets in facilitating air–sea gas transfer. In: IOP conference series: earth and environmental science. IOP Publishing, vol 35, p 012003.  https://doi.org/10.1088/1755-1315/35/1/012003 CrossRefGoogle Scholar
  5. Atkinson BW, Zhang JW (1996) Mesoscale shallow convection in the atmosphere. Rev Geophys 34(4):403–431.  https://doi.org/10.1029/96RG02623 CrossRefGoogle Scholar
  6. Belamari S (2005) Report on uncertainty estimates of an optimal bulk formulation for surface turbulent fluxes. MERSEA IP Deliverable D 4.1.2:29Google Scholar
  7. Bellon G, Stevens B (2012) Using the sensitivity of large-eddy simulations to evaluate atmospheric boundary layer models. J Atmos Sci 69(5):1582–1601.  https://doi.org/10.1175/JAS-D-11-0160.1 CrossRefGoogle Scholar
  8. Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117(8):1872–1890.  https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2 CrossRefGoogle Scholar
  9. Brasseur JG (2010) Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys Fluids 22(2):021303.  https://doi.org/10.1063/1.3319073 CrossRefGoogle Scholar
  10. Brient F, Couvreux F, Villefranque N, Rio C, Honnert R (2019) Object-oriented identification of coherent structures in large eddy simulations: importance of downdrafts in stratocumulus. Geophys Res Lett.  https://doi.org/10.1029/2018GL081499 CrossRefGoogle Scholar
  11. Brilouet PE, Durand P, Canut G (2017) The marine atmospheric boundary layer under strong wind conditions: organized turbulence structure and flux estimates by airborne measurements. J Geophys Res Atmos 122(4):2115–2130.  https://doi.org/10.1002/2016JD025960 CrossRefGoogle Scholar
  12. Brooks IM, Rogers DP (1997) Aircraft observations of boundary layer rolls off the coast of California. J Atmos Sci 54(14):1834–1849.  https://doi.org/10.1175/1520-0469(1997)054<1834:AOOBLR>2.0.CO;2 CrossRefGoogle Scholar
  13. Brosse F, Leriche M, Mari C, Couvreux F (2018) LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa. Atmos Chem Phys 18(9):6601–6624.  https://doi.org/10.5194/acp-18-6601-2018 CrossRefGoogle Scholar
  14. Brown RA (1980) Longitudinal instabilities and secondary flows in the planetary boundary layer: a review. Rev Geophys 18(3):683.  https://doi.org/10.1029/RG018i003p00683 CrossRefGoogle Scholar
  15. Brunke MA, Fairall CW, Zeng X, Eymard L, Curry JA (2003) Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J Clim 16(4):619–635.  https://doi.org/10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2 CrossRefGoogle Scholar
  16. Brümmer B, Pohlmann S (2000) Wintertime roll and cell convection over Greenland and Barents Sea regions: a climatology. J Geophys Res Atmos 105(D12):15559–15566.  https://doi.org/10.1029/1999JD900841 CrossRefGoogle Scholar
  17. Brümmer B, Bakan S, Hinzpeter H (1985) Kontur: observations of cloud streets and open cellular structures. Dyn Atmos Oceans 9(3):281–296.  https://doi.org/10.1016/0377-0265(85)90024-7 CrossRefGoogle Scholar
  18. Caughey SJ, Kitchen M, Leighton JR (1983) Turbulence structure in convective boundary layers and implications for diffusion. Boundary-Layer Meteorol 25(4):345–352.  https://doi.org/10.1007/BF02041153 CrossRefGoogle Scholar
  19. Chinita MJ, Matheou G, Teixeira J (2018) A joint probability density-based decomposition of turbulence in the atmospheric boundary layer. Mon Weather Rev 146(2):503–523.  https://doi.org/10.1175/MWR-D-17-0166.1 CrossRefGoogle Scholar
  20. Chlond A (1992) Three-dimensional simulation of cloud street development during a cold air outbreak. Boundary-Layer Meteorol 58(1–2):161–200.  https://doi.org/10.1007/BF00120757 CrossRefGoogle Scholar
  21. Chou SH (1993) A comparison of airborne eddy correlation and bulk aerodynamic methods for ocean–air turbulent fluxes during cold-air outbreaks. Boundary-Layer Meteorol 64(1–2):75–100.  https://doi.org/10.1007/BF00705663 CrossRefGoogle Scholar
  22. Chou SH, Ferguson MP (1991) Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak. Boundary-Layer Meteorol 55(3):255–281.  https://doi.org/10.1007/BF00122580 CrossRefGoogle Scholar
  23. Chou SH, Zimmerman J (1989) Bivariate conditional sampling of buoyancy flux during an intense cold-air outbreak. Boundary-Layer Meteorol 46(1–2):93–112.  https://doi.org/10.1007/BF00118448 CrossRefGoogle Scholar
  24. Colella P, Woodward PR (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys 54(1):174–201.  https://doi.org/10.1016/0021-9991(84)90143-8 CrossRefGoogle Scholar
  25. Cook PA, Renfrew IA (2015) Aircraft-based observations of air–sea turbulent fluxes around the British Isles: observations of air–sea fluxes. Q J R Meteorol Soc 141(686):139–152.  https://doi.org/10.1002/qj.2345 CrossRefGoogle Scholar
  26. Couvreux F, Guichard F, Redelsperger JL, Kiemle C, Masson V, Lafore JP, Flamant C (2005) Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP\_2002 observations. Q J R Meteorol Soc 131(611):2665–2693.  https://doi.org/10.1256/qj.04.167 CrossRefGoogle Scholar
  27. Couvreux F, Hourdin F, Rio C (2010) Resolved versus parametrized boundary–layer plumes. Part I: a parametrization–oriented conditional sampling in large-eddy simulations. Boundary-Layer Meteorol 134(3):441–458.  https://doi.org/10.1007/s10546-009-9456-5 CrossRefGoogle Scholar
  28. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126(562):1–30.  https://doi.org/10.1002/qj.49712656202 CrossRefGoogle Scholar
  29. Darbieu C, Lohou F, Lothon M, Vilà-Guerau de Arellano J, Couvreux F, Durand P, Pino D, Patton EG, Nilsson E, Blay-Carreras E, Gioli B (2015) Turbulence vertical structure of the boundary layer during the afternoon transition. Atmos Chem Phys 15(17):10071–10086.  https://doi.org/10.5194/acp-15-10071-2015 CrossRefGoogle Scholar
  30. Deardorff JW (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J Atmos Sci 27(8):1211–1213.  https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2 CrossRefGoogle Scholar
  31. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4):495–527.  https://doi.org/10.1007/BF00119502 CrossRefGoogle Scholar
  32. Deardorff JW, Willis GE (1985) Further results from a laboratory model of the convective planetary boundary layer. Boundary-Layer Meteorol 32(3):205–236.  https://doi.org/10.1007/BF00121880 CrossRefGoogle Scholar
  33. de Roode SR, Duynkerke PG, Jonker HJJ (2004) Large-eddy simulation: how large is large enough? J Atmos Sci 61(4):403–421.  https://doi.org/10.1175/1520-0469(2004)061<0403:LSHLIL>2.0.CO;2 CrossRefGoogle Scholar
  34. de Roode SR, Frederikse T, Siebesma AP, Ackerman AS, Chylik J, Field PR, Fricke J, Gryschka M, Hill A, Honnert R, Krueger SK, Lac C, Lesage AT, Tomassini L (2019) Turbulent transport in the gray zone: a large eddy model intercomparison study of the CONSTRAIN cold air outbreak case. J Adv Model Earth Syst 11(3):597–623.  https://doi.org/10.1029/2018MS001443 CrossRefGoogle Scholar
  35. Durran DR (1989) Improving the anelastic approximation. J Atmos Sci 46(11):1453–1461.  https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2 CrossRefGoogle Scholar
  36. Emanuel K (2018) 100 years of progress in tropical cyclone research. Meteorol Monogr 59:15.1–15.68.  https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1 CrossRefGoogle Scholar
  37. Estournel C, Testor P, Taupier-Letage I, Bouin MN, Coppola L, Durand P, Conan P, Bosse A, Brilouet PE, Beguery L, Belamari S, Béranger K, Beuvier J, Bourras D, Canut G, Doerenbecher A, Durrieu de Madron X, D’Ortenzio F, Drobinski P, Ducrocq V, Fourrié N, Giordani H, Houpert L, Labatut L, Lebeaupin Brossier C, Nuret M, Prieur L, Roussot O, Seyfried L, Somot S (2016) HyMeX-SOP2: the field campaign dedicated to dense water formation in the Northwestern Mediterranean. Oceanography 29(4):196–206.  https://doi.org/10.5670/oceanog.2016.94 CrossRefGoogle Scholar
  38. Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65(3):215–248.  https://doi.org/10.1007/BF00705527 CrossRefGoogle Scholar
  39. Etling D, Raasch S (1987) Numerical simulation of vortex roll development during a cold air outbreak. Dyn Atmos Oceans 10(4):277–290.  https://doi.org/10.1016/0377-0265(87)90021-2 CrossRefGoogle Scholar
  40. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J Clim 16(4):571–591.  https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2 CrossRefGoogle Scholar
  41. Flamant C (2003) Alpine lee cyclogenesis influence on air–sea heat exchanges and marine atmospheric boundary layer thermodynamics over the western Mediterranean during a Tramontane/Mistral event. J Geophys Res Oceans.  https://doi.org/10.1029/2001JC001040 CrossRefGoogle Scholar
  42. Flamant C, Pelon J (1996) Atmospheric boundary-layer structure over the mediterranean during a tramontane event. Q J R Meteorol Soc 122(536):1741–1778.  https://doi.org/10.1002/qj.49712253602 CrossRefGoogle Scholar
  43. Fourrié N, Nuret M, Brousseau P, Caumont O, Doerenbecher A, Wattrelot E, Moll P, Bénichou H, Puech D, Bock O, Bosser P, Chazette P, Flamant C, Di Girolamo P, Richard E, Saïd F (2019) The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX). Geosci Model Dev 12(7):2657–2678.  https://doi.org/10.5194/gmd-12-2657-2019 CrossRefGoogle Scholar
  44. Fourrié N, Bresson E, Nuret M, Jany C, Brousseau P, Doerenbecher A, Kreitz M, Nuissier O, Sevault E, Bénichou H, Amodei M, Pouponneau F (2015) AROME-WMED, a real-time mesoscale model designed for the HyMeX special observation periods. Geosci Model Dev 8(7):1919–1941.  https://doi.org/10.5194/gmd-8-1919-2015 CrossRefGoogle Scholar
  45. Grossman RL (1982) An analysis of vertical velocity spectra obtained in the bomex fair-weather, trade-wind boundary layer. Boundary-Layer Meteorol 23(3):323–357.  https://doi.org/10.1007/BF00121120 CrossRefGoogle Scholar
  46. Grossman RL (1984) Bivariate conditional sampling of moisture flux over a tropical ocean. J Atmos Sci 41(22):3238–3254.  https://doi.org/10.1175/1520-0469(1984)041<3238:BCSOMF>2.0.CO;2 CrossRefGoogle Scholar
  47. Grossman RL, Betts AK (1990) Air–sea interaction during an extreme cold air outbreak from the Eastern Coast of the United States. Mon Weather Rev 118(2):324–342.  https://doi.org/10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2 CrossRefGoogle Scholar
  48. Gryschka M, Raasch S (2005) Roll convection during a cold air outbreak: a large eddy simulation with stationary model domain. Geophys Res Lett.  https://doi.org/10.1029/2005GL022872 CrossRefGoogle Scholar
  49. Gryschka M, Fricke J, Raasch S (2014) On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks. J Geophys Re Atmos 119(22):12,513–12,532.  https://doi.org/10.1002/2014JD022160 CrossRefGoogle Scholar
  50. Guichard F, Couvreux F (2017) A short review of numerical cloud-resolving models. Tellus A Dyn Meteorol Oceanogr 69(1):1373578.  https://doi.org/10.1080/16000870.2017.1373578 CrossRefGoogle Scholar
  51. Honnert R, Masson V, Couvreux F (2011) A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J Atmos Sci 68(12):3112–3131.  https://doi.org/10.1175/JAS-D-11-061.1 CrossRefGoogle Scholar
  52. Hourdin F, Couvreux F, Menut L (2002) Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59(6):1105–1123.  https://doi.org/10.1175/1520-0469(2002)059<1105:POTDCB>2.0.CO;2 CrossRefGoogle Scholar
  53. Jonker HJJ, Duynkerke PG, Cuijpers JWM (1999) Mesoscale fluctuations in scalars generated by boundary layer convection. J Atmos Sci 56(5):801–808.  https://doi.org/10.1175/1520-0469(1999)056<0801:MFISGB>2.0.CO;2 CrossRefGoogle Scholar
  54. Lac C, Chaboureau JP, Masson V, Pinty JP, Tulet P, Escobar J, Leriche M, Barthe C, Aouizerats B, Augros C, Aumond P, Auguste F, Bechtold P, Berthet S, Bielli S, Bosseur F, Caumont O, Cohard JM, Colin J, Couvreux F, Cuxart J, Delautier G, Dauhut T, Ducrocq V, Filippi JB, Gazen D, Geoffroy O, Gheusi F, Honnert R, Lafore JP, Lebeaupin Brossier C, Libois Q, Lunet T, Mari C, Maric T, Mascart P, Mogé M, Molinié G, Nuissier O, Pantillon F, Peyrillé P‘, Pergaud J, Perraud E, Pianezze J, Redelsperger JL, Ricard D, Richard E, Riette S, Rodier Q, Schoetter R, Seyfried L, Stein J, Suhre K, Taufour M, Thouron O, Turner S, Verrelle A, Vié B, Visentin F, Vionnet V, Wautelet P (2018) Overview of the Meso-NH model version 5.4 and its applications. Geosci Model Dev 11(5):1929–1969.  https://doi.org/10.5194/gmd-11-1929-2018 CrossRefGoogle Scholar
  55. Lane TP, Clark TL (2002) Gravity waves generated by the dry convective boundary layer: two-dimensional scale selection and boundary-layer feedback. Q J R Meteorol Soc 128(583):1543–1570.  https://doi.org/10.1002/qj.200212858308 CrossRefGoogle Scholar
  56. Lebeaupin Brossier C, Ducrocq V, Giordani H (2008) Sensitivity of three mediterranean heavy rain events to two different sea surface fluxes parameterizations in high-resolution numerical modeling. J Geophys Res Atmos.  https://doi.org/10.1029/2007JD009613 CrossRefGoogle Scholar
  57. LeMone MA (1976) Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J Atmos Sci 33(7):1308–1320.  https://doi.org/10.1175/1520-0469(1976)033<1308:MOTEBL>2.0.CO;2 CrossRefGoogle Scholar
  58. Li Q, Gentine P, Mellado JP, McColl KA (2018) Implications of nonlocal transport and conditionally averaged statistics on Monin–Obukhov similarity theory and Townsend’s attached eddy hypothesis. J Atmos Sci 75(10):3403–3431.  https://doi.org/10.1175/JAS-D-17-0301.1 CrossRefGoogle Scholar
  59. Liu AQ, Moore GWK, Tsuboki K, Renfrew IA (2004) A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys Res Lett.  https://doi.org/10.1029/2003GL018530 CrossRefGoogle Scholar
  60. Liu WT, Katsaros KB, Businger JA (1979) Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36(9):1722–1735.  https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2 CrossRefGoogle Scholar
  61. Lohou F, Druilhet A, Campistron B, Redelsperger JL, Saïd F (2000) Numerical study of the impact of coherent structures on vertical transfers in the atmospheric boundary layer. Boundary-Layer Meteorol 97(3):361–383.  https://doi.org/10.1023/A:1002641728075 CrossRefGoogle Scholar
  62. Lothon M, Couvreux F, Donier S, Guichard F, Lacarrère P, Lenschow DH, Noilhan J, Saïd F (2007) Impact of coherent eddies on airborne measurements of vertical turbulent fluxes. Boundary-Layer Meteorol 124(3):425–447.  https://doi.org/10.1007/s10546-007-9182-9 CrossRefGoogle Scholar
  63. Lunet T, Lac C, Auguste F, Visentin F, Masson V, Escobar J (2017) Combination of WENO and explicit Runge–Kutta methods for wind transport in the Meso-NH model. Mon Weather Rev 145(9):3817–3838.  https://doi.org/10.1175/MWR-D-16-0343.1 CrossRefGoogle Scholar
  64. Melfi SH, Palm SP (2012) Estimating the orientation and spacing of midlatitude linear convective boundary layer features: cloud streets. J Atmos Sci 69(1):352–364.  https://doi.org/10.1175/JAS-D-11-070.1 CrossRefGoogle Scholar
  65. Mertens C, Schott F (1998) Interannual variability of deep-water formation in the Northwestern Mediterranean. J Phys Oceanogr 28(7):1410–1424.  https://doi.org/10.1175/1520-0485(1998)028<1410:IVODWF>2.0.CO;2 CrossRefGoogle Scholar
  66. Miao Q, Geerts B, LeMone M (2006) Vertical velocity and buoyancy characteristics of coherent echo plumes in the convective boundary layer, detected by a profiling airborne radar. J Appl Meteorol Clim 45(6):838–855.  https://doi.org/10.1175/JAM2375.1 CrossRefGoogle Scholar
  67. Moon IJ, Ginis I, Hara T, Thomas B (2007) A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon Weather Rev 135(8):2869–2878.  https://doi.org/10.1175/MWR3432.1 CrossRefGoogle Scholar
  68. Morrison H, De Boer G, Feingold G, Harrington J, Shupe MD, Sulia K (2012) Resilience of persistent arctic mixed-phase clouds. Nat Geosci 5(1):11.  https://doi.org/10.1038/ngeo1332 CrossRefGoogle Scholar
  69. Müller G, Chlond A (1996) Three-dimensional numerical study of cell broadening during cold-air outbreaks. Boundary-Layer Meteorol 81(3–4):289–323.  https://doi.org/10.1007/BF02430333 CrossRefGoogle Scholar
  70. Müller G, Brümmer B, Alpers W (1999) Roll convection within an Arctic cold-air outbreak: interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon Weather Rev 127(3):363–380.  https://doi.org/10.1175/1520-0493(1999)127<0363:RCWAAC>2.0.CO;2 CrossRefGoogle Scholar
  71. Park SB, Gentine P, Schneider K, Farge M (2016) Coherent structures in the boundary and cloud layers: role of updrafts, subsiding shells, and environmental subsidence. J Atmos Sci 73(4):1789–1814.  https://doi.org/10.1175/JAS-D-15-0240.1 CrossRefGoogle Scholar
  72. Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132(1):83–106.  https://doi.org/10.1007/s10546-009-9388-0 CrossRefGoogle Scholar
  73. Pinty JP, Jabouille P (1998) A mixed–phase cloud parameterization for use in mesoscale non-hydrostatic model: simulations of a squall line and of orographic precipitations. In: Proceedings of Conference on Cloud Physics, pp 217–220Google Scholar
  74. Pope S (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  75. Redelsperger JL, Sommeria G (1986) Three-dimensional simulation of a convective storm: sensitivity studies on subgrid parameterization and spatial resolution. J Atmos Sci 43(22):2619–2635.  https://doi.org/10.1175/1520-0469(1986)043<2619:TDSOAC>2.0.CO;2 CrossRefGoogle Scholar
  76. Renfrew IA, Moore GWK (1999) An extreme cold-air outbreak over the Labrador sea: roll vortices and air–sea interaction. Mon Weather Rev 127(10):2379–2394.  https://doi.org/10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2 CrossRefGoogle Scholar
  77. Ricard D, Lac C, Riette S, Legrand R, Mary A (2013) Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Q J R Meteorol Soc 139(674):1327–1341.  https://doi.org/10.1002/qj.2025 CrossRefGoogle Scholar
  78. Salesky ST, Anderson W (2018) Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J Fluid Mech 856:135–168.  https://doi.org/10.1017/jfm.2018.711 CrossRefGoogle Scholar
  79. Salesky ST, Chamecki M, Bou-Zeid E (2017) On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol 163(1):41–68.  https://doi.org/10.1007/s10546-016-0220-3 CrossRefGoogle Scholar
  80. Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France convective-scale operational model. Mon Weather Rev 139(3):976–991.  https://doi.org/10.1175/2010MWR3425.1 CrossRefGoogle Scholar
  81. Shin HH, Hong SY (2013) Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J Atmos Sci 70(10):3248–3261.  https://doi.org/10.1175/JAS-D-12-0290.1 CrossRefGoogle Scholar
  82. Skamarock WC (2004) Evaluating mesoscale nwp models using kinetic energy spectra. Mon Weather Rev 132(12):3019–3032.  https://doi.org/10.1175/MWR2830.1 CrossRefGoogle Scholar
  83. Smedman A, Högström U, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) Observational study of marine atmospheric boundary layer characteristics during swell. J Atmos Sci 66(9):2747–2763.  https://doi.org/10.1175/2009JAS2952.1 CrossRefGoogle Scholar
  84. Soares P, Miranda P, Siebesma A, Teixeira J (2004) An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Q J R Meteorol Soc 130(604):3365–3383.  https://doi.org/10.1256/qj.03.223 CrossRefGoogle Scholar
  85. Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J Atmos Sci 68(10):2395–2415.  https://doi.org/10.1175/JAS-D-10-05010.1 CrossRefGoogle Scholar
  86. Sullivan PP, McWilliams JC, Moeng CH (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71(3):247–276.  https://doi.org/10.1007/BF00713741 CrossRefGoogle Scholar
  87. Sullivan PP, Horst TW, Lenschow DH, Moeng CH, Weil JC (2003) Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482:101–139.  https://doi.org/10.1017/S0022112003004099 CrossRefGoogle Scholar
  88. Sun J, Lenschow DH, LeMone MA, Mahrt L (2016) The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations. Boundary-Layer Meteorol 160(1):83–111.  https://doi.org/10.1007/s10546-016-0134-0 CrossRefGoogle Scholar
  89. Sykes RI, Henn DS (1989) Large-eddy simulation of turbulent sheared convection. J Atmos Sci 46(8):1106–1118.  https://doi.org/10.1175/1520-0469(1989)046<1106:LESOTS>2.0.CO;2 CrossRefGoogle Scholar
  90. Thurston W, Fawcett RJB, Tory KJ, Kepert JD (2016) Simulating boundary-layer rolls with a numerical weather prediction model. Q J R Meteorol Soc 142(694):211–223.  https://doi.org/10.1002/qj.2646 CrossRefGoogle Scholar
  91. Tomassini L, Field PR, Honnert R, Malardel S, McTaggart-Cowan R, Saitou K, Noda AT, Seifert A (2017) The “Grey Zone” cold air outbreak global model intercomparison: a cross evaluation using large-eddy simulations. J Adv Model Earth Syst 9(1):39–64.  https://doi.org/10.1002/2016MS000822 CrossRefGoogle Scholar
  92. Townsend AA (1961) Equilibrium layers and wall turbulence. J Fluid Mech 11(1):97–120.  https://doi.org/10.1017/S0022112061000883 CrossRefGoogle Scholar
  93. Tsinober A, Levich E (1983) On the helical nature of three-dimensional coherent structures in turbulent flows. Phys Lett A 99(6–7):321–324.  https://doi.org/10.1016/0375-9601(83)90896-4 CrossRefGoogle Scholar
  94. Vogel R, Nuijens L, Stevens B (2016) The role of precipitation and spatial organization in the response of trade-wind clouds to warming. J Adv Model Earth Syst 8(2):843–862.  https://doi.org/10.1002/2015MS000568 CrossRefGoogle Scholar
  95. Weckwerth TM, Wilson JW, Wakimoto RM (1996) Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon Weather Rev 124(5):769–784.  https://doi.org/10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2 CrossRefGoogle Scholar
  96. Weller RA, Bradley F, Lukas R (2004) The interface or air–sea flux component of the TOGA coupled ocean–atmosphere response experiment and its impact on subsequent air–sea interaction studies. J Atmos Ocean Technol 21(2):223–257.  https://doi.org/10.1175/1520-0426(2004)021<0223:TIOAFC>2.0.CO;2 CrossRefGoogle Scholar
  97. Wyngaard JC (1983) Lectures on the planetary boundary layer. In: Lilly DK, Gal-Chen T (eds) Mesoscale meteorology—theories, observations and models. Springer, Dordrecht, pp 603–650.  https://doi.org/10.1007/978-94-017-2241-4_33 CrossRefGoogle Scholar
  98. Young GS (1988) Turbulence structure of the convective boundary layer. Part II. Phonenix 78 aircraft observations of thermals and their environment. J Atmos Sci 45(4):727–735.  https://doi.org/10.1175/1520-0469(1988)045<0727:TSOTCB>2.0.CO;2 CrossRefGoogle Scholar
  99. Young GS, Kristovich DAR, Hjelmfelt MR, Foster RC (2002) Rolls, streets, waves, and more: a review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull Am Meteorol Soc 83(7):997–1001.  https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2 CrossRefGoogle Scholar
  100. Zurn-Birkhimer SM, Agee EM, Sorbjan Z (2005) Convective structures in a cold air outbreak over Lake Michigan during Lake-ICE. J Atmos Sci 62(7):2414–2432.  https://doi.org/10.1175/JAS3494.1 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Laboratoire d’Aérologie, CNRS, UPSUniversité de ToulouseToulouseFrance
  2. 2.CNRM UMR 3589, CNRSUniversité de Toulouse, Météo-FranceToulouseFrance

Personalised recommendations