Advertisement

Aircraft Observations of Turbulence Characteristics in the Tropical Cyclone Boundary Layer

  • Zhongkuo ZhaoEmail author
  • P. W. Chan
  • Naigeng Wu
  • Jun A. Zhang
  • K. K. Hon
Research Article
  • 76 Downloads

Abstract

The Hong Kong Observatory conducted six flights in the atmospheric boundary layer of five tropical cyclones: tropical storm Jebi (1309), typhoon Kalmaegi (1415), severe tropical storm Linfa (1510), typhoon Mujigae (1522), and severe typhoon Nida (1604). Three-dimensional wind data with a 20-Hz sampling rate are available for a height range of 500–670 m, with the mean wind speed from these low-level flights ranging from 10 to 62 m s−1. The turbulent momentum flux and turbulence kinetic energy (e) are measured using the eddy-correlation method, while horizontal scales of turbulent eddies, vertical eddy diffusivity (K), and the vertical turbulent mixing length scale are estimated indirectly. The dependence of the momentum flux, e, K, and the vertical mixing length on wind speed and height are compared with previous studies. Both the momentum flux and turbulent kinetic energy increase with the wind speed, although the rate of increase is smaller for higher wind speeds. It is also found that K increases with wind speed according to a power law up to 40 m s−1 before levelling off, while the vertical mixing length is nearly constant at 100 m. The results serve as a reference for evaluating and improving the turbulent parametrizion in tropical-cyclone models, while the observed large turbulent mixing near the top of the inflow layer of the eyewall region should not be neglected in numerical models.

Keywords

Atmospheric turbulence Boundary layer Tropical cyclones Vertical eddy diffusivity 

Notes

Acknowledgements

We are grateful to the scientists and crew members who participated in the field work that helped collect the aircraft data used in this study. Zhongkuo Zhao was sponsored by the National Major Fundamental Research Program of China (Grant No. 2018YFC1507401) and the National Natural Science Foundation (Grant Nos. 41875021, 41830533, 41675019, 41675021). Jun Zhang was supported by Grant NA14NWS4680028 and NSF Grants AGS1822128 and ASG1654831.

Supplementary material

10546_2019_487_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. Beswick KM, Gallagher MW, Webb AR, Norton EG, Perry F (2008) Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project. Atmos Chem Phys 8(17):5449–5463CrossRefGoogle Scholar
  2. Black PG, D’Asaro EA, Drennan WM, French JR, Niiler PP, Sanford TB, Terrill EJ, Walsh EJ, Zhang JA (2007) Air–sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull Am Meteorol Soc 88(3):357–374CrossRefGoogle Scholar
  3. Chan PW, Hon K, Foster S (2011) Wind data collected by a fixed-wing aircraft in the vicinity of a tropical cyclone over the south China coastal. Meteorol Z 20:313–321CrossRefGoogle Scholar
  4. Chan PW, Wong WK, Hon KK (2014) Weather observations by aircraft reconnaissance inside Severe Typhoon Utor. Weather 69(8):199–202CrossRefGoogle Scholar
  5. Charney JG, Eliassen A (1964) On the growth of the hurricane depression. J Atmos Sci 21(1):68–75CrossRefGoogle Scholar
  6. Coronel R, Sawada M, Iwasaki T (2016) Impacts of surface drag coefficient and planetary boundary layer schemes on the structure and energetics of Typhoon Megi (2010) during intensification. J Meteorol Soc Jpn Ser II 94(1):55–73CrossRefGoogle Scholar
  7. Di Z, Duan Q, Gong W, Wang C, Gan Y, Quan J, Li J, Miao C, Ye A, Tong C (2015) Assessing WRF model parameter sensitivity: a case study with 5 day summer precipitation forecasting in the Greater Beijing Area. Geophys Res Lett 42(2):579–587CrossRefGoogle Scholar
  8. Donelan MA (1990) Air–sea interaction. In: LeMehaute B, Hanes DM (eds) The Sea. Wiley, Hoboken, pp 239–292Google Scholar
  9. Drennan WM, Zhang JA, French JR, McCormick C, Black PG (2007) Turbulent fluxes in the hurricane boundary layer. Part II: latent heat flux. J Atmos Sci 64(4):1103–1115CrossRefGoogle Scholar
  10. Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65(3):215–248CrossRefGoogle Scholar
  11. Fang J, Tang J, Wu R (2009) The effect of surface friction on the development of tropical cyclones. Adv Atmos Sci 26(6):1146–1156CrossRefGoogle Scholar
  12. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1):83–105CrossRefGoogle Scholar
  13. Foster RC (2009) Boundary-layer similarity under an axisymmetric, gradient wind vortex. Boundary-Layer Meteorol 131(3):321–344CrossRefGoogle Scholar
  14. Foster S, Chan PW (2012) Improving the wind and temperature measurements of an airborne meteorological measuring system. J Zhejiang Univ Sci A 13(10):723–746CrossRefGoogle Scholar
  15. French JR, Drennan WM, Zhang JA, Black PG (2007) Turbulent fluxes in the hurricane boundary layer. Part I: momentum flux. J Atmos Sci 64(4):1089–1102CrossRefGoogle Scholar
  16. Gall R, Tuttle J, Hildebrand P (1998) Small-scale spiral bands observed in hurricanes Andrew, Hugo, and Erin. Mon Weather Rev 126(7):1749–1766CrossRefGoogle Scholar
  17. Gopalakrishnan SG, Marks F, Zhang JA, Zhang X, Bao J-W, Tallapragada V (2013) A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J Atmos Sci 70(2):524–541CrossRefGoogle Scholar
  18. Hanna SR (1968) A method of estimating vertical eddy transport in the planetary boundary layer using characteristics of the vertical velocity spectrum. J Atmos Sci 25(6):1026–1033CrossRefGoogle Scholar
  19. Holt T, Raman S (1988) A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev Geophys 26(4):761–780CrossRefGoogle Scholar
  20. Kepert JD (2012) Choosing a boundary layer parameterization for tropical cyclone modeling. Mon Weather Rev 140(5):1427–1445CrossRefGoogle Scholar
  21. Kilroy G, Montgomery MT, Smith RK (2017) The role of boundary-layer friction on tropical cyclogenesis and subsequent intensification. Q J R Meteorol Soc 143(707):2524–2536CrossRefGoogle Scholar
  22. Li Q, Duan Y, Yu H, Fu G (2010) Finescale spiral rainbands modeled in a high-resolution simulation of Typhoon Rananim (2004). Adv Atmos Sci 27(3):685–704CrossRefGoogle Scholar
  23. Liu J, Zhang F, Pu Z (2017) Numerical simulation of the rapid intensification of Hurricane Katrina (2005): sensitivity to boundary layer parameterization schemes. Adv Atmos Sci 34(4):482–496CrossRefGoogle Scholar
  24. Ming J, Zhang JA (2018) Direct measurements of momentum flux and dissipative heating in the surface layer of tropical cyclones during landfalls. J Geophys Res Atmos 123(10):4926–4938CrossRefGoogle Scholar
  25. Morrison I, Businger S, Marks F, Dodge P, Businger JA (2005) An observational case for the prevalence of roll vortices in the Hurricane boundary layer. J Atmos Sci 62(8):2662–2673CrossRefGoogle Scholar
  26. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216CrossRefGoogle Scholar
  27. Ooyama K (1969) Numerical simulation of the life cycle of tropical cyclones. J Atmos Sci 26(1):3–40CrossRefGoogle Scholar
  28. Pendergrass AG, Willoughby HE (2009) Diabatically induced secondary flows in tropical cyclones. Part I: quasi-steady forcing. Mon Weather Rev 137(3):805–821CrossRefGoogle Scholar
  29. Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283CrossRefGoogle Scholar
  30. Rai D, Pattnaik S (2018) Sensitivity of tropical cyclone intensity and structure to planetary boundary layer parameterization. Asia-Pac J Atmos Sci 54(3):473–488CrossRefGoogle Scholar
  31. Shapiro LJ, Willoughby HE (1982) The response of balanced hurricanes to local sources of heat and momentum. J Atmos Sci 39(2):378–394CrossRefGoogle Scholar
  32. Smith RK, Montgomery MT, Van Sang N (2009) Tropical cyclone spin-up revisited. Q J R Meteorol Soc 135(642):1321–1335CrossRefGoogle Scholar
  33. Smith RK, Zhang JA, Montgomery MT (2017) The dynamics of intensification in a Hurricane Weather Research and forecasting simulation of Hurricane Earl (2010). Q J R Meteorol Soc 143(702):293–308CrossRefGoogle Scholar
  34. Tang J, Zhang JA, Aberson SD, Marks FD, Lei X (2018) Multilevel tower observations of vertical eddy diffusivity and mixing length in the tropical cyclone boundary layer during landfalls. J Atmos Sci 75(9):3159–3168CrossRefGoogle Scholar
  35. Tennekes H (1973) The logarithmic wind profile. J Atmos Sci 30(2):234–238CrossRefGoogle Scholar
  36. Trauth MH (2015) Time-series analysis. Springer, BerlinCrossRefGoogle Scholar
  37. Wang Y (2001) An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: model description and control experiment. Mon Weather Rev 129(6):1370–1394CrossRefGoogle Scholar
  38. Wong MLM, Chan JCL (2006) Tropical cyclone motion in response to land surface friction. J Atmos Sci 63(4):1324–1337CrossRefGoogle Scholar
  39. Zhang F, Pu Z (2017) Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J Atmos Sci 74(6):1879–1905CrossRefGoogle Scholar
  40. Zhang F, Pu Z, Wang C (2017a) Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon Weather Rev 145(6):2343–2361CrossRefGoogle Scholar
  41. Zhang JA, Black PG, French JR, Drennan WM (2008a) First direct measurements of enthalpy flux in the hurricane boundary layer: the CBLAST results. Geophys Res Lett.  https://doi.org/10.1029/2008GL034374 CrossRefGoogle Scholar
  42. Zhang JA, Drennan WM (2012) An observational study of vertical eddy diffusivity in the hurricane boundary layer. J Atmos Sci 69(11):3223–3236CrossRefGoogle Scholar
  43. Zhang JA, Drennan WM, Black PG, French JR (2009) Turbulence structure of the hurricane boundary layer between the outer rainbands. J Atmos Sci 66(8):2455–2467CrossRefGoogle Scholar
  44. Zhang JA, Katsaros KB, Black PG, Lehner S, French JR, Drennan WM (2008b) Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Boundary-Layer Meteorol 128(2):173–189CrossRefGoogle Scholar
  45. Zhang JA, Marks FD, Montgomery MT, Lorsolo S (2011a) An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon Weather Rev 139(5):1447–1462CrossRefGoogle Scholar
  46. Zhang JA, Marks FD, Sippel JA, Rogers RF, Zhang X, Gopalakrishnan SG, Zhang Z, Tallapragada V (2018) Evaluating the impact of improvement in the horizontal diffusion parameterization on hurricane prediction in the operational Hurricane Weather Research and Forecast (HWRF) model. Weather Forecast 33(1):317–329CrossRefGoogle Scholar
  47. Zhang JA, Rogers RF, Nolan DS, Marks FD Jr. (2011b) On the characteristic height scales of the hurricane boundary layer. Mon Weather Rev 139(8):2523–2535CrossRefGoogle Scholar
  48. Zhang JA, Rogers RF, Tallapragada V (2017b) Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon Weather Rev 145(4):1413–1426CrossRefGoogle Scholar
  49. Zhao ZK, Liu CX, Li Q, Dai GF, Song QT, Lv WH (2015) Typhoon air–sea drag coefficient in coastal regions. J Geophys Res: Oceans 120(2):716–727CrossRefGoogle Scholar
  50. Zhu P, Furst J (2013) On the parameterization of surface momentum transport via drag coefficient in low-wind conditions. Geophys Res Lett 40(11):2824–2828CrossRefGoogle Scholar
  51. Zhu P, Menelaou K, Zhu Z (2014) Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Q J R Meteorol Soc 140(679):416–438CrossRefGoogle Scholar
  52. Zhu P, Wang Y, Chen SS, Curcic M, Gao C (2015) Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac. J Geophys Res: Oceans 121(1):861–876CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Guangzhou Institute of Tropical and Marine MeteorologyChina Meteorological AdministrationGuangzhouChina
  2. 2.Hong Kong ObservatoryHong KongChina
  3. 3.NOAA/AOML/Hurricane Research Division and University of Miami/CIMASMiamiUSA

Personalised recommendations