Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 6, pp 1065–1075 | Cite as

Synaptic metabolism: a new approach to inborn errors of neurotransmission

  • Alba Tristán-Noguero
  • Àngels García-Cazorla
Review

Abstract

To date, inborn errors of neurotransmitters have been defined based on the classic concept of inborn error of metabolism (IEM), and they include defects in synthesis, catabolism, and transport pathways. However, the omics era is bringing insights into new diseases and is leading to an extended definition of IEM including new categories and mechanisms. Neurotransmission takes place at the synapse, the most specialized tight junction in the brain. The concept of “synaptic metabolism” would point to the specific chemical composition and metabolic functions of the synapse. Based on these specialized functions, we aim to provide a tentative overview about the major categories of IEM susceptible to affect neurotransmission. Small molecule defects (biogenic amines and amino acids) and energy defects are amongst the most prevalent diseases reported to disturb the concentration of CSF neurotransmitters. In these IEM, the neurological phenotypes have been largely described. Disorders of complex molecules are not typically considered as diseases affecting neurotransmission. However, most of them have been recently discovered and are involved in intracellular vesiculation, trafficking, processing, and quality control mechanisms. In this large group, neurotransmission is affected in disorders of chaperones and autophagy, disorders of the synaptic vesicle, and diseases affecting pre-synaptic membranes (synthesis and remodeling of complex lipids, defects of glycosylation). Disorders of the vesicle pools, receptor trafficking, and the chronobiology of neurotransmission are potentially emerging new categories. Finally, although not considered as IEM, channelopathies are a large group of diseases disturbing neurotransmitter homeostasis. New CSF biomarkers will probably contribute to improve the diagnosis of these disorders and find new therapeutic targets.

Keywords

Synaptic metabolism Inborn errors of metabolism Inborn errors of neurotransmitters Extended concept of IEM Synaptopathies neurotransmitters 

Notes

Compliance with ethical standards

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

A. Tristán-Noguero and À. García-Cazorla declare that they have no conflict of interest.

Informed consent

Not applicable.

Animal rights

Not applicable.

References

  1. Anggono V and Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22(3):461–69Google Scholar
  2. Anikster Y, Tobias BH, Thierry V, Pode-Shakked B, Thöny B, Shen N, Guarani V et al (2017) Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet 100(2):257–266.  https://doi.org/10.1016/j.ajhg.2017.01.002 Google Scholar
  3. Appenzeller S, Balling R, Barisic N, Baulac S, Caglayan H, Craiu D, De Jonghe P et al (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic Encephalopathies. Am J Hum Genet 100(1):179.  https://doi.org/10.1016/j.ajhg.2016.12.012. Google Scholar
  4. Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 69(2):269–277.  https://doi.org/10.1086/321970 Google Scholar
  5. Cortès-Saladelafont E, Molero-Luis M, Ormazábal A, Tristán-Noguero A, Díez H, Sierra C, Armstrong J, Artuch R, Garcia-Cazorla A (2015) Diagnosis of biogenic amines synthesis defects. pdf. J Pediatr Neurol 13:186–197Google Scholar
  6. Cortès-Saladelafont E, Tristán-Noguero A, Artuch R, Altafaj X, Bayès A, García-Cazorla A (2016) Diseases of the synaptic vesicle: a potential new group of neurometabolic disorders affecting neurotransmission. Semin Pediatr Neurol 23(4):306–320Google Scholar
  7. Curtis RC, Hyland K, Ficicioglu CF, Randall R (2012) Dihydropteridine reductase deficiency and treatment with tetrahydrobiopterin: a case report. JIMD Reports 4:113–116.  https://doi.org/10.1007/8904. Google Scholar
  8. Deas E, Plun-Favreau H, Wood NW (2009) PINK1 function in health and disease. EMBO Molecular Medicine 1(3):152–165.  https://doi.org/10.1002/emmm.200900024 Google Scholar
  9. De Grandis E, Serrano M, Pérez-Dueñas B, Ormazábal A, Montero R, Veneselli E, Pineda M et al (2010) Cerebrospinal fluid alterations of the serotonin product, 5-hydroxyindolacetic acid, in neurological disorders. J Inherit Metab Dis 33(6):803–809.  https://doi.org/10.1007/s10545-010-9200-9 Google Scholar
  10. Dick KJ, Eckhardt M, Paisán-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA, Maier H et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31(4):1251–1260.  https://doi.org/10.1002/humu.21205. Google Scholar
  11. Díez H, Cortès-Saladelafont E, Ormazábal A, Fernández Marmiese A, Armstrong J, Matalonga L, Bravo M et al (2017) Severe infantile Parkinsonism because of a de novo mutation on DLP1 mitochondrial-peroxisomal protein. Mov Disord 32(7):1108–1110.  https://doi.org/10.1002/mds.27021 Google Scholar
  12. Galanopoulou AS (2010) Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 460:505–523.  https://doi.org/10.1007/s00424-010-0816-2 Google Scholar
  13. Garcia-Cazorla A, Duarte S, Serrano M, Nascimento A, Ormazabal A, Carrilho I, Briones P et al (2008) Mitochondrial diseases mimicking neurotransmitter defects. Mitochondrion 8(3):273–278.  https://doi.org/10.1016/j.mito.2008.05.001 Google Scholar
  14. García-Cazorla A, Saudubray JM (2018) Cellular neurometabolism: a tentative to connect cell biology and metabolism in neurology. J Inherit Metab Dis (In Press)Google Scholar
  15. Geldenhuys WJ, Abdelmagid SM, Gallegos PJ, Safadi FF (2014) Parkinson’s disease biomarker: a patent evaluation of WO2013153386. Expert Opinion Therapeutic Patents 24(8):947–951.  https://doi.org/10.1517/13543776.2014.931375 Google Scholar
  16. Gozes I, Van Dijck A, Hacohen-Kleiman G, Grigg I, Karmon G, Giladi E, Eger M et al. (2017). Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Translational Psychiatry 7 (2). Nature Publishing Group. doi:10.1038/tp.2017.27.Google Scholar
  17. Henderson MX, Wirak GS, Zhang YQ, Dai F, Ginsberg SD, Dolzhanskaya N, Staropol JF et al (2016) Neuronal ceroid lipofuscinosis with DNAJC5/CSP mutations have PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol 131(6188):621–637.  https://doi.org/10.1126/science.1249098. Google Scholar
  18. Horvath GA, Demos M, Shyr C, Matthews A, Zhang L, Race S, Stockler-Ipsiroglu S et al (2016) Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: a potential treatment target? Mol Genet Metab 117(1). Elsevier Inc):42–48.  https://doi.org/10.1016/j.ymgme.2015.11.008 Google Scholar
  19. Hu Z, Tong XJ, Kaplan JM (2013) UNC-13L, UNC-13S, and tomosyn form a protein code for fast and slow neurotransmitter release in Caenorhabditis elegans. ELife 2:1–20.  https://doi.org/10.7554/eLife.00967 Google Scholar
  20. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 30(6):386–396.  https://doi.org/10.1016/j.mcp.2016.11.001. Google Scholar
  21. Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V, Darvish H, Di Paolo G et al (2013) The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 34(9):1200–1207.  https://doi.org/10.1146/annurev-cellbio-092910-154240.Sensory. Google Scholar
  22. Kumar A, Dejanovic B, Hetsch F et al (2017) S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenumcofactor deficiency. J Clin Invest 127(12):4365–4378Google Scholar
  23. Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, Morgan NV et al (2009) Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile Parkinsonism-dystonia. Children 119(6):1595–1603.  https://doi.org/10.1172/JCI39060.tigations Google Scholar
  24. Kurolap A, Armbruster A, Hershkovitz T et al (2016) Loss of glycine transporter 1 causes a subtype of glycine encephalopathy with arthrogryposis and mildly elevated cerebrospinal fluid glycine. Am J Hum Genet 99:1172–1180Google Scholar
  25. Lauwers E, Goodchild R, Verstreken P (2016) Membrane lipids in presynaptic function and disease. Neuron 90(1). Elsevier Inc):11–25.  https://doi.org/10.1016/j.neuron.2016.02.033 Google Scholar
  26. Leuzzi V, Carducci CA, Carducci CL, Pozzessere S, Burlina A, Cerone R, Concolino D et al (2010) Phenotypic variability, neurological outcome and genetics background of 6-pyruvoyl-tetrahydropterin synthase deficiency. Clin Genet 77(3):249–257.  https://doi.org/10.1111/j.1399-0004.2009.01306.x Google Scholar
  27. Madeo M, Stewart M, Sun Y, Sahir N, Wiethoff S, Chandrasekar I, Yarrow A et al (2016) Loss-of-function mutations in FRRS1L lead to an epileptic-dyskinetic encephalopathy. Am J Hum Genet 98:1249–1255.  https://doi.org/10.1016/j.ajhg.2016.04.008 Google Scholar
  28. Manegold C, Hoffmann GF, Degen I, Ikonomidou H, Knust A, Laaß MW, Pritsch M et al (2009) Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis 32(3):371–380.  https://doi.org/10.1007/s10545-009-1076-1 Google Scholar
  29. Marecos C, Ng J, Kurian MA (2014) What is new for monoamine neurotransmitter disorders? J Inherit Metab Dis 37(4):619–626.  https://doi.org/10.1007/s10545-014-9697-4 Google Scholar
  30. Molero-Luis M, Serrano M, Ormazábal A, Pérez-Dueñas B, García-Cazorla A, Pons R, Artuch R (2013) Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Dev Med Child Neurol 55(6):559–566.  https://doi.org/10.1111/dmcn.12116 Google Scholar
  31. Neher, Erwin. (2015). Merits and limitations of vesicle pool models in view of heterogeneous populations of synaptic vesicles.” Neuron 87 (6). Elsevier: 1131–42. doi:10.1016/j.neuron.2015.08.038.Google Scholar
  32. Ng J, Papandreou A, Heales SJ, Kurian MA (2015) Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat Rev Neurol 11(10). Nature Publishing Group):567–584.  https://doi.org/10.1038/nrneurol.2015.172 Google Scholar
  33. Olgiati S, Quadri M, Fang M, Rood JP, Saute JA, Chien HF, Bouwkamp CG et al (2016) DNAJC6 mutations associated with early-onset Parkinson’s disease. Ann Neurol 79(2):244–256.  https://doi.org/10.1002/ana.24553. Google Scholar
  34. Opladen T, Hoffmann G, Hörster F, Hinz AB, Neidhardt K, Klein C, Wolf N (2011) Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 26(1):138–141.  https://doi.org/10.1002/mds.23301. Google Scholar
  35. Pearl PL, Taylor JL, Trzcinski S, Sokohl A (2007) The pediatric neurotransmitter disorders. J Child Neurol 22(5):606–616.  https://doi.org/10.1177/0883073807302619 Google Scholar
  36. Pearl PL, Parviz M, Vogel K, Schreiber J, Theodore WH, Gibson KM (2014) Inherited disorders of gamma-aminobutyric acid metabolism and advances in ALDH5A1 mutation identification. Dev Med Child Neurol 57(7):611–617.  https://doi.org/10.1111/dmcn.12668 Google Scholar
  37. Pegg AE (2014) The function of spermine. IUBMB Life 66(1):8–18.  https://doi.org/10.1002/iub.1237 Google Scholar
  38. Petrov AM, Kasimov MR, Zefirov AL (2016) Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction. Acta Nat 8(1):58–73Google Scholar
  39. Rempe T, Kuhlenbäumer G, Krüger S, Biskup S, Matschke J, Hagel C, Deuschl G, Van Eimeren T (2016) Early-onset Parkinsonism due to compound heterozygous POLG mutations. Parkinsonism Related Disorders 29:135–137.  https://doi.org/10.1016/j.parkreldis.2016.04.020 Google Scholar
  40. Rilstone JJ, Alkhater RA, Minassian BA (2013) Brain dopamine–serotonin vesicular transport disease and its treatment. N Engl J Med 368(6):543–550.  https://doi.org/10.1056/NEJMoa1207281 Google Scholar
  41. Scott H, Panin VM (2014) The role of protein N-glycosylation in neural transmission. Glycobiology 24(5):407–417.  https://doi.org/10.1093/glycob/cwu015 Google Scholar
  42. Senard JM, Rouet P (2006) Dopamine beta-hydroxylase deficiency. Orphanet J Rare Diseases 1(1):1–4.  https://doi.org/10.1186/1750-1172-1-7. Google Scholar
  43. Sjaastad O, Berstad J, Gjesdahl P, Gjessing L (1976) Homocarnosinosis. 2. A familial meta-bolic disorder associated with spastic paraplegia, progressive mental deficiency, and retinal pigmentation. Acta Neurol Scand 53:275–290.  https://doi.org/10.1111/j.1600-0404.1976.tb04348.x Google Scholar
  44. Soto D, Altafaj X, Sindreu C, Bayés A (2014) Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 7(1):e27887.  https://doi.org/10.4161/cib.27887 Google Scholar
  45. Spillane J, Kullmann DM, Hanna MG (2016) Genetic neurological channelopathies: molecular genetics and clinical phenotypes. J Neurol Neurosurg Psychiatry 87(1):37–48.  https://doi.org/10.1136/jnnp-2015-311233. Google Scholar
  46. Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3).  https://doi.org/10.1016/j.neuron.2013.10.022.N
  47. Südhof TC (2017) Molecular neuroscience in the 21st century: a personal perspective. Neuron 96(3):536–541.  https://doi.org/10.1016/j.neuron.2017.10.005 Google Scholar
  48. Tada K, Hayasaka K (1987) Non-ketotic hyperglycinaemia: clinical and biochemical aspects. Europ J Pediat 146:221–227Google Scholar
  49. Takada Y, Sakai Y, Matsushita Y, Ohkubo K, Koga Y, Akamine S, Torio M et al (2017) Sustained endocrine profiles of a girl with WAGR syndrome. BMC Medical Genetics 18(1):1–5.  https://doi.org/10.1186/s12881-017-0477-5 Google Scholar
  50. Thibodeau ML, Peters CH, Townsend KN, Shen Y, Hendson G, Adam S, Selby K et al (2017) Compound heterozygous TRPV4 mutations in two siblings with a complex phenotype including severe intellectual disability and neuropathy. American J Medical Genetics, Part A 173(11):3087–3092.  https://doi.org/10.1002/ajmg.a.38400 Google Scholar
  51. Tijssen MAJ & Rees MI. Hyperekplexia (1993-2018) GeneReviews. Seattle (WA): University of Washington, SeattleGoogle Scholar
  52. Tsuji M, Aida N, Obata T, Tomiyasu M, Furuya N, Kurosawa K, Errami A et al (2010) A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 33:85–90.  https://doi.org/10.1007/s10545-009-9022-9 Google Scholar
  53. Wei S, Soh SL, Xia J, Ong WY, Pang ZP, Han W (2014) Motor neuropathy-associated mutation impairs seipin functions in neurotransmission. J Neurochem 129(2):328–338.  https://doi.org/10.1111/jnc.12638 Google Scholar
  54. Willemsen MA, Verbeek MM, Kamsteeg EJ, de Rijk-van Andel JF, Aeby A, Blau N, Burlina A et al (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain: A Journal of Neurology 133(Pt 6):1810–1822.  https://doi.org/10.1093/brain/awq087 Google Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • Alba Tristán-Noguero
    • 1
  • Àngels García-Cazorla
    • 1
    • 2
    • 3
  1. 1.Synaptic Metabolism Laboratory, Department of Neurology, Fundació Sant Joan de DéuInstitut Pediàtric de RecercaBarcelonaSpain
  2. 2.Neurology DepartmentHospital Sant Joan de DéuEspluguesSpain
  3. 3.Neurometabolic Unit and Synaptic Metabolism Lab. Department of Neurology, Institut Pediàtric de RecercaHospital Sant Joan de Déu and CIBERER (ISCIII)BarcelonaSpain

Personalised recommendations