Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 6, pp 1027–1035 | Cite as

Manifesting heterozygotes in McArdle disease: a myth or a reality—role of statins

  • Judit Núñez-Manchón
  • Alfonsina Ballester-Lopez
  • Emma Koehorst
  • Ian Linares-Pardo
  • Daniëlle Coenen
  • Ignacio Ara
  • Carlos Rodriguez-Lopez
  • Alba Ramos-Fransi
  • Alicia Martínez-Piñeiro
  • Giuseppe Lucente
  • Miriam Almendrote
  • Jaume Coll-Cantí
  • Guillem Pintos-Morell
  • Alejandro Santos-Lozano
  • Joaquin Arenas
  • Miguel Angel Martín
  • Mauricio de Castro
  • Alejandro Lucia
  • Alfredo Santalla
  • Gisela Nogales-GadeaEmail author
Glycogen Storage Disease

Abstract

McArdle disease is an autosomal recessive condition caused by deficiency of the PYGM gene-encoded muscle isoform of glycogen phosphorylase. Some cases of “manifesting” heterozygotes or carriers (i.e., patients who show some McArdle-like symptoms or signs despite being carriers of only one mutated PYGM allele) have been reported in the literature but there is controversy, with misdiagnosis being a possibility. The purpose of our study was to determine if there are actually “manifesting” heterozygotes of McArdle disease and, if existing, whether statin treatment can trigger such condition. Eighty-one relatives of McArdle patients (among a total of 16 different families) were studied. We determined whether they were carriers of PYGM mutations and also collected information on exercise tests (second wind and modified Wingate anaerobic test) and statin intake. We found 50 carriers and 31 non-carriers of PYGM mutations. Although we found existence of heterozygotes manifesting some exercise-related muscle problems such as exacerbated myalgia or weakness, they only accounted for 14% of the carriers and muscle symptoms were milder than those commonly reported in patients. Further, no carrier (whether reporting symptoms or not) showed the second wind phenomenon or a flat blood lactate response to maximal-intensity exercise, both of which are hallmarks of McArdle disease. On the other hand, statin myotoxicity was not associated with muscle symptom onset.

Notes

Acknowledgements

We are grateful to the strong commitment and the helpful participation of the members of the Spanish Association of Glycogenosis in Spain.

Funding information

This study was funded by Fondo de Investigaciones Sanitarias and FEDER funds from the European Union (A.L., PI15/00558; G.N.G, PI15/01756 and CP14/00032, J.A. PI14/00903), AFM Telethon Trampoline Grant No. 21108, the Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES groups CB16/10/00477 and CB16/10/00314). J.N.M is funded by AFM Telethon Trampoline Grant No. 21108. A.B.L is funded by an FI Agaur fellowship FI_B 01090. E.K is funded by PI15/01756. I.L.P is funded by CP14/00032. C.R.L is funded by a FPI Grant No. BES-2016-077199. G.N.G is supported by a Miguel Servet research contract (ISCIII CD14/00032 and FEDER).

Compliance with ethical standards

Conflict of interest

Judit Núñez-Manchón declares that she is supported by a contract in the project AFM Telethon #21108. Alfonsina Ballester-Lopez declares funding by an FI Agaur fellowship FI_B 01090. Emma Koehorst declares that she is supported by a contract in the project PI15/01756 from Instituto de Salud Carlos III cofinanced by FEDER. Ian Linares-Pardo declares that he has a contract in the Miguel Servet project CP14/00032 cofinanced by FEDER. Daniëlle Coenen, Ignacio Ara, Alba Ramos-Fransi, Alicia Martinez Piñeiro, Miriam Almendrote, Jaume Coll, Alejandro Santos Lozano, Mauricio de Castro, and Alfredo Santalla declare that they have no conflict of interest. Carlos Rodriguez-Lopez declares funding by Secretaría de Estado de Investigación, Desarrollo e Innovación fellowship BES-2016-077199. Giuseppe Lucente declares that he is supported by a Rio Hortega contract (ISCIII CM16/00016 and FEDER). Guillem Pintos-Morell declares that he had had personal fees from Shire, and from BioMarin, outside the submitted work. Joaquin Arenas declares that he has a grant of the Instituto de Salud Carlos III and FEDER. Miguel Angel Martín declares that he has a grant of the Instituto de Salud Carlos III and FEDER. Alejandro Lucia declares that he has a grant of the Instituto de Salud Carlos III and FEDER. Gisela Nogales-Gadea declares grants from, Madrid, Spain (CP14/00032, PI15/01756 and FEDER) and France, AMF Telethon Trampoline Grant No. 21108.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee of the University Hospital Germans Trias i Pujol (study reviewed and approved by this committee with ref. PI-18-027) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal rights

This article does not contain any studies with animal subjects performed by the any of the authors.

Supplementary material

10545_2018_203_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)
10545_2018_203_MOESM2_ESM.pdf (303 kb)
ESM 2 (PDF 303 kb)

References

  1. Andersen ST, Dunø M, Schwartz M, Vissing J (2006) Do carriers of PYGM mutations have symptoms of McArdle disease? Neurology 67:716–718.  https://doi.org/10.1212/01.wnl.0000230154.79933.d7 CrossRefGoogle Scholar
  2. Baksi AK, Buxton PH, Cochrane P, Hughes RR (1977) Lactate production in McArdle’s disease. Postgrad Med J 53:161–164CrossRefGoogle Scholar
  3. Bar-Or O (1987) The Wingate anaerobic test an update on methodology, reliability and validity. Sport Med An Int J Appl Med Sci Sport Exerc 4:381–394.  https://doi.org/10.2165/00007256-198704060-00001 Google Scholar
  4. Beneke R, Pollmann C, Bleif I et al (2002) How anaerobic is the Wingate anaerobic test for humans? Eur J Appl Physiol 87:388–392.  https://doi.org/10.1007/s00421-002-0622-4 CrossRefGoogle Scholar
  5. Chui LA, Munsat TL (1976) Dominant inheritance of McArdle syndrome. Arch Neurol 33:637–641CrossRefGoogle Scholar
  6. De Castro M, Johnston J, Biesecker L (2015) Determining the prevalence of McArdle disease from gene frequency by analysis of next generation sequencing data: McArdle prevalence by NGS data. Gene 17:1002–1006.  https://doi.org/10.1038/gim.2015.9 Google Scholar
  7. Den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12.  https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N CrossRefGoogle Scholar
  8. du Souich P, Roederer G, Dufour R (2017) Myotoxicity of statins: mechanism of action. Pharmacol Ther 175:1–16.  https://doi.org/10.1016/j.pharmthera.2017.02.029 CrossRefGoogle Scholar
  9. Engel WK, Eyerman EL, Eyerman MD, Williams HE (1987) Late-onset type of skeletal-muscle phosphorylase deficency: a new familial variety with completely and partially affecetd subjects. N Engl J Med 268:135–137CrossRefGoogle Scholar
  10. Fattah SM, Rubulis A, Faloon WW (1970) McArdle’s disease: metabolic studies in a patient and review of the syndrome. Am J Med 48:693–699CrossRefGoogle Scholar
  11. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195.  https://doi.org/10.1007/s00223-014-9915-y CrossRefGoogle Scholar
  12. Hawker GA, Mian S, Kendzerska T, French M (2011) Measures of adult pain: visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF). Arthritis Care Res 63:240–252.  https://doi.org/10.1002/acr.20543 CrossRefGoogle Scholar
  13. Hughes DA, Tunnage B, Yeo ST (2005) Drugs for exceptionally rare diseases: do they deserve special status for funding? QJM - Mon J Assoc Physicians 98:829–836.  https://doi.org/10.1093/qjmed/hci128 CrossRefGoogle Scholar
  14. Inal-Gültekin G, Toptaş-Hekimoğlu B, Görmez Z et al (2017) Myophosphorylase (PYGM) mutations determined by next generation sequencing in a cohort from Turkey with McArdle disease. Neuromuscul Disord 27:997–1008.  https://doi.org/10.1016/j.nmd.2017.06.004 CrossRefGoogle Scholar
  15. Jensen MP, McFarland CA (1993) Increasing the reliability and validity of pain intensity measurement in chronic pain patients. Pain 55:195–203.  https://doi.org/10.1016/0304-3959(93)90148-I CrossRefGoogle Scholar
  16. Lorenzoni PJ, Silvado CE, Scola RH et al (2007) McArdle disease with rhabdomyolysis induced by rosuvastatin: case report. Arq Neuropsiquiatr 65:834–837.  https://doi.org/10.1590/S0004-282X2007000500020 CrossRefGoogle Scholar
  17. Manfredi G, Silvestri G, Servidei S et al (1993) Manifesting heterozygotes in McArdle’s disease: clinical, morphological and biochemical studies in a family. J Neurol Sci 115:91–94.  https://doi.org/10.1016/0022-510X(93)90071-6 CrossRefGoogle Scholar
  18. Nogales-Gadea G, Pinós T, Lucia A et al (2012) Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain 135(Pt 7):2048–2057CrossRefGoogle Scholar
  19. Nogales-Gadea G, Brull A, Santalla A et al (2015) McArdle disease: update of reported mutations and polymorphisms in the PYGM gene. Hum Mutat 36:669–678.  https://doi.org/10.1002/humu.22806 CrossRefGoogle Scholar
  20. Papadimitriou A, Manta P, Divari R et al (1990) McArdle’s disease: two clinical expressions in the same pedigree. J Neurol 237:267–270.  https://doi.org/10.1007/BF00314633 CrossRefGoogle Scholar
  21. Ramkumar S, Raghunath A, Raghunath S (2016) Statin therapy: review of safety and potential side effects. Acta Cardiol Sin 32:631–639.  https://doi.org/10.6515/ACS20160611A Google Scholar
  22. Santalla A, Nogales-Gadea G, Encinar AB et al (2017) Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics 18:39–47.  https://doi.org/10.1186/s12864-017-4188-2 CrossRefGoogle Scholar
  23. Scalco RS, Chatfield S, Godfrey R et al (2014) From exercise intolerance to functional improvement: the second wind phenomenon in the identification of McArdle disease. Arq Neuropsiquiatr 72:538–541.  https://doi.org/10.1590/0004-282X20140062 CrossRefGoogle Scholar
  24. Schmidt B, Servidei S, Gabbai AA et al (1987) McArdle’s disease in two generations: autosomal recessive transmission with manifesting heterozygote. Neurology 37:1558–1561CrossRefGoogle Scholar
  25. Taylor RG, Lieberman JS, Portwood MM (1987) Ischemic exercise test: failure to detect partial expression of Mcardle’s disease. Muscle Nerve 10:546–551.  https://doi.org/10.1002/mus.880100609 CrossRefGoogle Scholar
  26. Vissing J, Haller RG (2003) A diagnostic cycle test for McArdle’ s disease. Ann Neurol 54:539–542CrossRefGoogle Scholar
  27. Vladutiu GD, Simmons Z, Isackson PJ et al (2006) Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve 34:153–162.  https://doi.org/10.1002/mus.20567 CrossRefGoogle Scholar
  28. Wu Y, Weber JL, Vladutiu GD, Tarnopolsky MA (2011) Six novel mutations in the myophosphorylase gene in patients with McArdle disease and a family with pseudo-dominant inheritance pattern. Mol Genet Metab 104:587–591.  https://doi.org/10.1016/j.ymgme.2011.08.012 CrossRefGoogle Scholar

Copyright information

© SSIEM 2018
corrected publication July/2018

Authors and Affiliations

  • Judit Núñez-Manchón
    • 1
  • Alfonsina Ballester-Lopez
    • 1
    • 2
  • Emma Koehorst
    • 1
  • Ian Linares-Pardo
    • 1
  • Daniëlle Coenen
    • 3
  • Ignacio Ara
    • 4
    • 5
  • Carlos Rodriguez-Lopez
    • 4
    • 5
  • Alba Ramos-Fransi
    • 1
    • 6
  • Alicia Martínez-Piñeiro
    • 1
    • 6
  • Giuseppe Lucente
    • 1
    • 6
  • Miriam Almendrote
    • 1
    • 6
  • Jaume Coll-Cantí
    • 1
    • 2
    • 6
  • Guillem Pintos-Morell
    • 1
    • 2
    • 7
  • Alejandro Santos-Lozano
    • 8
    • 9
  • Joaquin Arenas
    • 2
    • 8
  • Miguel Angel Martín
    • 2
    • 8
  • Mauricio de Castro
    • 10
  • Alejandro Lucia
    • 5
    • 8
    • 11
  • Alfredo Santalla
    • 5
    • 8
    • 12
  • Gisela Nogales-Gadea
    • 1
    • 2
    Email author
  1. 1.Grup de Recerca en Malalties Neuromusculars i NeuropediatriquesInstitut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Centre for Biomedical Network Research on Rare Diseases (CIBERER)Instituto de Salud Carlos IIIMadridSpain
  3. 3.Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
  4. 4.GENUD Toledo Research GroupUniversidad de Castilla-La ManchaMadridSpain
  5. 5.CIBER of Frailty and Healthy Aging (CIBER FES)MadridSpain
  6. 6.Neuromuscular Pathology Unit, Neurology Service, Neuroscience DepartmentHospital Universitari Germans Trias i PujolBarcelonaSpain
  7. 7.Division of Rare DiseasesVall d’Hebron University Hospital BarcelonaSpain
  8. 8.Instituto de Investigación Hospital 12 de Octubre (i+12)MadridSpain
  9. 9.i+HeALTH, European University Miguel de CervantesValladolidSpain
  10. 10.United States Air Force Medical Genetics Center81st Medical Group, Keesler AFBBiloxiUSA
  11. 11.Universidad Europea de Madrid (Faculty of Sport Sciences)MadridSpain
  12. 12.Universidad Pablo de OlavideSevillaSpain

Personalised recommendations