Non-osteogenic muscle hypertrophy in children with McArdle disease

  • I. Rodríguez-Gómez
  • A. Santalla
  • J. Díez-Bermejo
  • D. Munguía-Izquierdo
  • L. M. Alegre
  • G. Nogales-Gadea
  • J. Arenas
  • M. A. Martín
  • A. Lucía
  • I. Ara
Glycogen Storage Disease
  • 27 Downloads

Abstract

Introduction

McArdle disease is an inborn disorder of muscle glycogen metabolism that produces exercise intolerance, and has been recently associated with low values ​​of lean mass (LM) and bone mineral content (BMC) and density (BMD) in affected adults. Here we aimed to study whether this bone health problem begins in childhood.

Methods

Forty children and adolescents were evaluated: 10 McArdle disease and 30 control children (mean age of both groups, 13 ± 2y). Body composition was evaluated by dual-energy X-ray absorptiometry and creatine kinase (CK) levels were determined in the patients as an estimate of muscle damage.

Results

Legs bone mass was significantly lower in patients than in controls (−36% for BMC and −22% for BMD). Moreover, patients had significantly higher LM values in the legs than controls, whereas no difference was found for fat mass. CK levels were positively associated with LM in McArdle patients. A correlation was found between LM and BMD variables in the control group but not in McArdle patients.

Conclusion

We have identified a ‘non-osteogenic muscle hypertrophy’ in children with McArdle disease. This phenomenon warrants special attention since low osteogenesis at an early age predicts a high risk for osteoporosis later in life.

Notes

Acknowledgments

This study was funded by the Cátedra Real Madrid - Universidad Europea de Madrid (P2016/RM25), Fondo de Investigaciones Sanitarias (A.L., PI15/00558; G.N.G, PI15/01756 and CP14/00032, J.A. PI14/00903), AFM Telethon Trampoline Grant #21108, the Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES) and FEDER funds from the European Union (CB16/10/00477). Irene Rodríguez Gómez has received a PhD grant from the Universidad de Castilla-La Mancha “Contratos predoctorales para la formación de personal investigador en el marco del Plan Propio de I + D + i, cofinanciados por el Fondo Social Europeo” (2014/10340).

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

10545_2018_170_MOESM1_ESM.doc (36 kb)
ESM 1 (DOC 36 kb)

References

  1. Bachrach LK (2014) Diagnosis and treatment of pediatric osteoporosis. Curr Opin Endocrinol Diabet Obes 21(6):454–460CrossRefGoogle Scholar
  2. Bertoldo F, Zappini F, Brigo M et al (2015) Prevalence of asymptomatic vertebral fractures in late-onset Pompe disease. J Clin Endocrinol Metab 100(2):401–406.  https://doi.org/10.1210/jc.2014-2763 CrossRefPubMedGoogle Scholar
  3. Demirsoy U, Sarper N, Gelen SA, Zengin E, Kum T, Demir H (2017) The association of oral vitamin D and calcium supplementation with bone mineral density in pediatric acute lymphoblastic leukemia patients. J Pediatr Hematol Oncol 39(4):287–292Google Scholar
  4. Evans WJ, Cannon JG (1991) 3 the metabolic effects of exercise-induced muscle damage. Exerc Sport Sci Rev 19(1):99–126CrossRefPubMedGoogle Scholar
  5. Garcia-Benitez S, Fleck SJ, Naclerio F, Martin MA, Lucia A (2013) Resistance (weight lifting) training in an adolescent with McArdle disease. J Child Neurol 28(6):805–808.  https://doi.org/10.1177/0883073812451328 CrossRefPubMedGoogle Scholar
  6. Golden NH, Abrams SA (2014) Optimizing bone health in children and adolescents. Pediatrics 134(4):e1229–e1243CrossRefPubMedGoogle Scholar
  7. Komulainen J, Kalliokoski R, Koskinen S, Drost M, Kuipers H, Hesselink M (2000) Controlled lengthening or shortening contraction-induced damage is followed by fiber hypertrophy in rat skeletal muscle. Int J Sports Med 21(02):107–112CrossRefPubMedGoogle Scholar
  8. Lucia A, Ruiz JR, Santalla A et al (2012) Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry 83(3):322–328.  https://doi.org/10.1136/jnnp-2011-301593 CrossRefPubMedGoogle Scholar
  9. Marrani E, Giani T, Simonini G, Cimaz R (2017) Pediatric osteoporosis: diagnosis and treatment considerations. Drugs 77(6):679-695.  https://doi.org/10.1007/s40265-017-0715-3
  10. Melis D, Rossi A, Pivonello R et al (2016) Reduced bone mineral density in glycogen storage disease type III: evidence for a possible connection between metabolic imbalance and bone homeostasis. Bone 86:79–85.  https://doi.org/10.1016/j.bone.2016.02.012 CrossRefPubMedGoogle Scholar
  11. Mitchell JA, Chesi A, Elci O et al (2015) Genetics of bone mass in childhood and adolescence: effects of sex and maturation interactions. J Bone Miner Res 30(9):1676–1683CrossRefPubMedPubMedCentralGoogle Scholar
  12. Nogales-Gadea G, Santalla A, Ballester-Lopez A et al (2016) Exercise and preexercise nutrition as treatment for McArdle disease. Med Sci Sports Exerc 48(4):673–679.  https://doi.org/10.1249/MSS.0000000000000812
  13. Noori N, Kovesdy CP, Bross R et al (2011) Novel equations to estimate lean body mass in maintenance hemodialysis patients. Am J Kidney Dis 57(1):130–139CrossRefPubMedPubMedCentralGoogle Scholar
  14. Oterdoom LH, Gansevoort RT, Schouten JP, de Jong PE, Gans RO, Bakker SJ (2009) Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 207(2):534–540CrossRefPubMedGoogle Scholar
  15. Patel SS, Molnar MZ, Tayek JA et al (2013) Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcopenia Muscle 4(1):19–29CrossRefPubMedGoogle Scholar
  16. Perez M, Mate-Munoz JL, Foster C et al (2007) Exercise capacity in a child with McArdle disease. J Child Neurol 22(7):880–882.  https://doi.org/10.1177/0883073807304206 CrossRefPubMedGoogle Scholar
  17. Rake JP, Visser G, Huismans D et al (2003) Bone mineral density in children, adolescents and adults with glycogen storage disease type Ia: a cross-sectional and longitudinal study. J Inherit Metab Dis 26(4):371–384CrossRefPubMedGoogle Scholar
  18. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R (2004) The ‘muscle-bone unit’during the pubertal growth spurt. Bone 34(5):771–775CrossRefPubMedGoogle Scholar
  19. Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2):294–305CrossRefPubMedGoogle Scholar
  20. Rodríguez-Gómez I, Santalla A, Diez-Bermejo J et al (2018) A new condition in McArdle disease: poor bone health—benefits of an active lifestyle. Med Sci Sports Exerc 50(1):3-10.  https://doi.org/10.1249/MSS.0000000000001414
  21. Santalla A, Munguía-Izquierdo D, Brea-Alejo L et al (2014a) Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front Aging Neurosci 6:334CrossRefPubMedPubMedCentralGoogle Scholar
  22. Santalla A, Nogales-Gadea G, Ortenblad N et al (2014b) McArdle disease: a unique study model in sports medicine. Sports Med 44(11):1531–1544.  https://doi.org/10.1007/s40279-014-0223-5 CrossRefPubMedGoogle Scholar
  23. Santalla A, Nogales-Gadea G, Encinar AB et al (2017) Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics 18(8):819CrossRefPubMedPubMedCentralGoogle Scholar
  24. Scalco RS, Morrow JM, Booth S, Chatfield S, Godfrey R, Quinlivan R (2017) Misdiagnosis is an important factor for diagnostic delay in McArdle disease. Neuromuscular Disord 27(9):852-855.  https://doi.org/10.1016/j.nmd.2017.04.013
  25. Schoenau E (2005) From mechanostat theory to development of the" functional muscle-bone-unit". J Musculoskelet Nueronal Interact 5(3):232Google Scholar
  26. Schoenau E, Frost H (2002) The" muscle-bone unit" in children and adolescents. Calcif Tissue Int 70(5):405–407CrossRefPubMedGoogle Scholar
  27. Schonau E, Schwahn B, Rauch F (2002) The muscle-bone relationship: methods and management — perspectives in glycogen storage disease. Eur J Pediatr 161(Suppl 1):S50–S52.  https://doi.org/10.1007/s00431-002-1003-z
  28. Schwahn B, Rauch F, Wendel U, Schonau E (2002) Low bone mass in glycogen storage disease type 1 is associated with reduced muscle force and poor metabolic control. J Pediatr 141(3):350–356.  https://doi.org/10.1067/mpd.2002.126456 CrossRefPubMedGoogle Scholar
  29. Smith TJ, Tripkovic L, Lanham-New SA, Hart KH (2017) Vitamin D in adolescence: evidence-based dietary requirements and implications for public health policy. Proc Nutri Soc 1–10Google Scholar
  30. Vicente-Rodríguez G (2006) How does exercise affect bone development during growth? Sports Med 36(7):561–569CrossRefPubMedGoogle Scholar
  31. Vicente-Rodriguez G, Ara I, Pérez-Gómez J, Dorado C, Calbet JA (2005) Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 39(9):611–616CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wernig A, Irintchev A, Weisshaupt P (1990) Muscle injury, cross-sectional area and fibre type distribution in mouse soleus after intermittent wheel-running. J Physiol 428(1):639–652CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • I. Rodríguez-Gómez
    • 1
    • 2
  • A. Santalla
    • 2
    • 3
  • J. Díez-Bermejo
    • 4
  • D. Munguía-Izquierdo
    • 2
    • 3
  • L. M. Alegre
    • 1
    • 2
  • G. Nogales-Gadea
    • 5
    • 6
  • J. Arenas
    • 4
    • 6
  • M. A. Martín
    • 4
    • 6
  • A. Lucía
    • 2
    • 7
  • I. Ara
    • 1
    • 2
  1. 1.GENUD Toledo Research GroupUniversidad de Castilla-La ManchaToledoSpain
  2. 2.CIBER of Frailty and Healthy Aging (CIBERFES)MadridSpain
  3. 3.Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of SportUniversidad Pablo de OlavideSevillaSpain
  4. 4.Research Institute Hospital 12 de OctubreMadridSpain
  5. 5.Neuromuscular and Neuropediatric Research Group, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can RutiUniversitat Autònoma de BarcelonaBadalonaSpain
  6. 6.CIBER Rare Disorders (CIBERER)MadridSpain
  7. 7.School of Research and Doctorate StudiesUniversidad Europea de MadridMadridSpain

Personalised recommendations